Skip to main content

Study of Fault Current Limiter—A Survey

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 661))

Abstract

The requirement of electric energy is gaining pace in day-to-day life. Due to which, distributed energy source (DES) has been introduced in power sector. But while connecting DES with the distribution network this will increase the fault current level of the system [1]. Many protective devices like high impedance transformer, series reactor, switchgear, etc., are being used to limit the fault current which make the system costlier, cause low dependability and reduced operational flexibility [2]. As these devices are expensive, it is necessary to protect them from fault. A fault current limiter (FCL) is an alternative and flexible means of standard protective device, and it overcomes the problems occur due to increased fault current levels. This paper focuses on different types of FCL and its application in power system which are still in research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadav S, Choudhary GK, Mandal RK (2014) Review on fault current limiters. Int J Eng 3:4 (2014); Clerk Maxwell J (1892) A treatise on electricity and magnetism, 3rd ed., vol. 2. Oxford, Clarendon, pp 68–73

    Google Scholar 

  2. Yadav S, Bharati K, Tewari V Superconducting fault current limiter-a review

    Google Scholar 

  3. Khan UA et al (2010) Feasibility analysis of the positioning of superconducting fault current limiters for the smart grid application using simulink and simpower system. IEEE Trans Appl Superconduct 21(3):2165–2169

    Article  Google Scholar 

  4. Okakwu IK, Orukpe PE, Ogujor EA (2018) Application of superconducting fault current limiter (SFCL) in power systems: a review. Eur J Eng Res Sci 3(7):28–32

    Article  Google Scholar 

  5. Roy F (2010) Modeling and characterization of coated conductors applied to the design of superconducting fault current limiters. No. THESIS. EPFL

    Google Scholar 

  6. Vaishnavi BV et al (2016) Superconducting fault current limiter and its application. Int J Sci Eng Res 7(5):126–134

    Google Scholar 

  7. Jo HC, Joo SK (2015) Superconducting fault current limiter placement for power system protection using the minimax regret criterion. IEEE Trans Appl Supercond 25

    Google Scholar 

  8. Blair SM, Elders IM, Booth CD, Burt GM, McCarthy J, Singh NK (2011) Superconducting fault current limiter application in a power-dense marine electrical system. IET Electr. Syst. Transp. 1:93–102

    Article  Google Scholar 

  9. Kim MH, Kim J, You IK, Lim SH, Kim JC (2011) A study on practical impedance of superconducting fault curren tlimiter on bus tie in a power distribution system. J Int Counc Electr Eng 1:54–59

    Article  Google Scholar 

  10. Lee J-G, Khan UA, Hwang J-S, Seong J-K, Shin W-J, Park B-B, Lee B-W (2014) Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system. Phys. C Supercond. Appl. 504:163–166

    Article  Google Scholar 

  11. Jo HC, Joo SK, Lee K (2013) Optimalplacementofsuperconductingfaultcurrentlimiters (SFCLs) for protection of an electric power system with distributed generations (DGs). IEEE Trans Appl Supercond 23:3–6

    Google Scholar 

  12. Ye LYL, Lin LLL, Juengst K-P (2002) Applicationstudiesofsuperconductingfaultcurrentlimitersinelectric power systems. IEEE Trans Appl Supercond 12:900–903

    Google Scholar 

  13. Hasan M, Rashid G (2016) Fault ride through capability improvement of DFIG based winds farm by fuzzy logic controlled parallel resonance fault current limiter. Electr Power Syst Res 146:1–8

    Google Scholar 

  14. Tarafdar MT, Jafari M, Naderi SB (2010) Transient stability improvement using non-superconducting fault current limiter. In: Proceedings of the 1st power electronic and drive systems and technologies conference (PEDSTC), Tehran, Iran, 17–18 February 2010, pp 367–370

    Google Scholar 

  15. Hossain ME (2017) Performance analysis of diode-bridge-type non-superconducting fault current limiter in improving transient stability of DFIG based variable speed wind generator. Electr Power Syst Res 143:782–793

    Article  Google Scholar 

  16. Hagh MT, Abapour M (2009) Non superconducting fault current limiter with controlling the magnitudes of fault currents. IEEE Trans Power Electron 24:613–619

    Article  Google Scholar 

  17. Dixit M et al (2013) Development of 440 V/800 a high temperature superconducting fault current limiter (SFCL). Indian J Cryogen 38(1–4):1–7

    Google Scholar 

  18. Sung BC, Park DK, Park JW, Ko TK (2009) StudyonaseriesresistivesFCLtoimprovepowersystemtransient stability: modeling, simulation, and experimental verification. IEEE Trans Ind Electron 56:2412–2419

    Google Scholar 

  19. Moghadasi A, Sarwat A, Guerrero JM (2016) Multiobjective optimization in combinatorial wind farms system integration and resistive SFCL using analytical hierarchy process. Renew. Energy 94:366–382

    Article  Google Scholar 

  20. Sung BC, Park J (2010) Optimal parameter selection of resistive SFCL applied to a power system using eigenvalue analysis. IEEE Trans Appl Supercond 20:1147–1150

    Article  Google Scholar 

  21. Ahn MC, Park DK, Yang SE, Kim MJ, Chang HM, Yoon YS, Seok BY, Park JW, Ko TK (2007) Recovery characteristics of resistive SFCL wound with YBCO coated conductor in a power system. IEEE Trans Appl Supercond 17:1859–1862

    Article  Google Scholar 

  22. Zou ZC, Xiao XY, Liu YF, Zhang Y, Wang YH (2016) Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults. IEEE Trans Appl Supercond 26:1

    Google Scholar 

  23. Zou ZC, Xiao XY, Ou R, Li CS (2015) Low-voltage ride-through capability enhancement of DFIG-based wind turbine with a resistive-type SFCL connected in series with rotor winding. Proc IEEE Int Conf Appl Superconduct Electromagn Dev Shanghai, China 20–23:42–43

    Google Scholar 

  24. Morandi A, Imparato S, Grasso G, Berta S, Martini L, Bocchi M, Fabbri M, Negrini F, Ribani PL (2010) Design of a DC resistive SFCL for application to the 20 kV distribution system. IEEE Trans Appl Supercond 20:1122–1126

    Article  Google Scholar 

  25. Kim H, Lee JY, Kim HR, Yang SE, Yu SD, Kim WS, Hyun OB, Ko J, Yeom H (2013) An effect of HTS wire configuration on quench recovery time in a resistive SFCL. IEEE Trans Appl Supercond 23:7–10

    Google Scholar 

  26. Zhu J, Zheng X, Qiu M, Zhang Z, Li J, Yuan W (2015) Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system. In: Proceedings of the 7th international conference on applied energy, Abu Dhabi, UAE, 28–31 April 2015, pp 716–721

    Google Scholar 

  27. Didier G, Bonnard CH, Lubin T, Leveque J (2015) Comparison between inductive and resistive SFCL in terms of current limitation and power system transient stability. Electr Power Syst Res 125:150–158

    Article  Google Scholar 

  28. Mafra GRFQ, Sotelo GG, Fortes MZ, Sousa WTBD (2017) Application of resistive superconducting fault current limiters in offshore oil production platforms. Electr Power Syst Res 144:107–114

    Article  Google Scholar 

  29. Behzad S, Negnevitsky M, Jalilian A, Tarafdar M, Muttaqi KM (2017) Low voltage ride-through enhancement of DFIG-based wind turbine using DC link switchable resistive type fault current limiter. Electr Power Energy Syst 86:104–119

    Article  Google Scholar 

  30. Lee S, Yoon J, Lee B (2010) Analysis model development and specification proposal of hybrid superconducting fault current limiter (SFCL). Phys C Supercond Appl 470:1615–1620

    Article  Google Scholar 

  31. Firouzi M, Gharehpetian GB, Mozafari B (2016) Improvement of powersystem stability by using new switching technique in bridge-type fault current limiter. Electr Power Comp Syst 43:234–244

    Article  Google Scholar 

  32. Majka M, Kozak J, Kozak S, Wojtasiewicz G, Janowski T (2015) Design and numerical analysis of the 15 kV class coreless inductive type SFCL. IEEE Trans Appl Supercond 25:1

    Article  Google Scholar 

  33. Kozak J, Majka M, Kozak S, Janowski T (2013) Comparison of inductive and resistive SFCL. IEEE Trans Appl Supercond 23:6–9

    Article  Google Scholar 

  34. Chen L, Chen H, Shu Z, Zhang G, Xia T, Ren L (2016) Comparison of inductive and resistive SFCL to robustness improvement of a VSC-HVDC system with wind plants against DC fault. IEEE Trans Appl Supercond 26:1

    Google Scholar 

  35. Naderi SB, Jafari M, Tarafdar Hagh M (2014) Controllable resistive type fault current limiter (CR-FCL) with frequency and pulse duty-cycle. Int J Electr Power Energy Syst 61:11–19

    Article  Google Scholar 

  36. Alam MS, Abido MA, El-Amin I (2018) Fault current limiters in powersystems: a Comprehensive Review. Energies 11(5):1025

    Article  Google Scholar 

  37. Choi HS, Cho YS, Lim SH (2006) Operationalcharacteristicsofhybrid-typeSFCLbythenumberofsecondary windings with YBCO films. IEEE Trans Appl Supercond 16:719–722

    Article  Google Scholar 

  38. De SK, Raja P (2013) A study on relay coordination in a distribution system with distributed generation and hybrid SFCL. Proc. IEEE AFRICON Conf. Pointe-Aux-Piments, Maurit. 9–12:1–6

    Google Scholar 

  39. Kim WS, Hyun OB, Park CR, Yim SW, Yu SD, Yang SE, Kim HS, Kim HR (2012) Dynamic characteristics of a 22.9 kV hybrid SFCL for short-circuit test considering a simple coordination of protection system in distribution networks. IEEE Trans Appl Supercond 22:3–6

    Google Scholar 

  40. Kim MJ, Chang HM, Sim J, Yim SW, Hyun OB (2011) Emergency blackout operation of cryogenic system for hybrid SFCL. IEEE Trans Appl Supercond 21:1284–1287

    Article  Google Scholar 

  41. Hoshino T, Muta I, Nakamura T, Salim KM, Yamada M (2005) Non-inductive variable reactor design and computer simulation of rectifier type superconducting fault current limiter. IEEE Trans Appl Supercond 15:2063–2066

    Article  Google Scholar 

  42. Liang F, Yuan W, Zhu J, Zhang M, Venuturumilli S, Li J, Patel J, Zhang G (2017) Experimental test of two types of non-inductive solenoidal coils for superconducting fault current cimiters use. IEEE Trans Appl Supercond 27:1505–1509

    Article  Google Scholar 

  43. Furuse M, Yamasaki H, Manabe T, Sohma M, Kondo W, Yamaguchi I, Kumagai T, Kaiho K, Arai K, Nakagawa M (2007) Current limiting properties of MOD-YBCO thin films stabilized with high-resistivity alloy shunt layer. IEEE Trans Appl Supercond 17:3479–3482

    Article  Google Scholar 

  44. Choi HS, Lee JH, Cho YS, Park HM (2009) Recovery behaviors of the transformer-type SFCL with or without neutral lines. IEEE Trans Appl Supercond 19:1793–1796

    Article  Google Scholar 

  45. Ko S, Lim S (2016) Analysis on magnetizing characteristics due to peak fault current limiting operation of a modified flux-lock-type SFCL with two magnetic paths. IEEE Trans Appl Supercond 26:4–8

    Article  Google Scholar 

  46. Ko SC, Han TH, Lim SH (2013) Study on peak current limiting characteristics of a flux-lock type SFCL with two magnetically coupled circuits. Phys. Procedia 45:305–308

    Article  Google Scholar 

  47. Han TH, Ko SC, Lim SH (2013) Current limiting characteristics of a flux-lock type SFCL using two triggered HTSC elements. Phys. Procedia 45:297–300

    Article  Google Scholar 

  48. Zhao Y, Saha TK, Krause O, Li Y (2015) Performance analysis of resistive and flux-lock type SFCL in electricity networks with DGs. In: Proceedings of the IEEE power and energy society general meeting, Denver, CO, USA, 22–26 July 2015, pp 1–5

    Google Scholar 

  49. Onishi T, Kawasumi M, Sasaki KI, Akimoto R (2002) An experimental study on a fast self-acting magnetic shield type superconducting fault current limiter. IEEE Trans Appl Supercond 12:868–871

    Article  Google Scholar 

  50. Heydari H, Abrishami AA, Bidgoli MM (2013) Comprehensive analysis for magnetic shield superconducting fault current limiters. IEEE Trans Appl Supercond 23:5604610

    Article  Google Scholar 

  51. Kado H, Ickikawa M (1997) Performance of a high-Tc superconducting fault current limiter-design of a 6.6 kV magnetic shielding type superconducting fault current limiter. IEEE Trans Appl Supercond 7:993–996

    Article  Google Scholar 

  52. Janowski T, Kozak S, Malinowski H, Wojtasiewicz G, Kondratowicz-Kucewicz B, Kozak J (2003) Properties comparison of superconducting fault current limiters with closed and open core. IEEE Trans Appl Supercond 13:2072–2075

    Article  Google Scholar 

  53. Shafiul AM et al (2018) Protection of inverter-based distributed generation with series dynamic braking resistor: a variable duty control approach. In: 2018 10th international conference on electrical and computer engineering (ICECE). IEEE

    Google Scholar 

  54. Okedu Kenneth E (2016) Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor. IET Renew Power Gener 10(8):1211–1219

    Article  Google Scholar 

  55. Noe Mathias, Steurer Michael (2007) High-temperature superconductor fault current limiters: concepts, applications, and development status. Supercond Sci Technol 20(3):R15

    Article  Google Scholar 

  56. Rashid G, Ali MH (2017) Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG based wind farm. IEEE Trans Energy Convers 32:284–295

    Article  Google Scholar 

  57. Rashid G, Ali MH (2014) Bridge-type fault current limiter for asymmetric fault ride-through capacity enhancement of doubly fed induction machine based wind generator. In: Proceedings of the 2014 IEEE energy conversion congress and exposition, Pittsburgh, PA, USA, 14–18 September 2014; pp 1903–1910

    Google Scholar 

  58. Rashid G, Ali MH (2014) A modified bridge-type fault current limiter for fault ride-through capacity enhancement of fixed speed wind generator. IEEE Trans Energy Convers 29(2):527–534

    Article  MathSciNet  Google Scholar 

  59. Abapour M, Jalilian A, Hagh MT, Muttaqi KM (2015) DC-link fault current limiter-based fault ride-through scheme for inverter-based distributed generation. IET Renew Power Gen 9:690–699

    Article  Google Scholar 

  60. Tarafdar HM et al (2015) Improving fault ride-through of three phase voltage source inverter during symmetrical fault using DC link fault current limiter. In: 2015 Australasian Universities power engineering conference (AUPEC). IEEE

    Google Scholar 

  61. Jalilian A, Hagh MT, Abapour M, Muttaqi KM (2015) DC-link fault current limiter-based fault ride-through scheme for inverter-based distributed generation. IET Renew Power Gen 9(6):690–699

    Article  Google Scholar 

  62. Guo W, Xiao L, Dai S, Xu X, Li Y, Wang Y (2015) Evaluation of the performance of BTFCLs for enhancing LVRT capability of DFIG. IEEE Trans Power Electron 30:3623–3637

    Article  Google Scholar 

  63. Firouzi M, Gharehpetian GB (2017) A modified transformer-type fault current limiter for enhancement fault ride-through capability of fixed speed-based wind power plants. In: 2017 conference on electrical power distribution networks conference (EPDC). IEEE

    Google Scholar 

  64. Tarafdar HM, Abapour M (2009) Non-superconducting fault current limiters. Eur Trans Electr Power 19(5):669–682

    Article  Google Scholar 

  65. Radmanesh H, Fathi SH, Gharehpetian GB (2015) Novel high performance DC reactor type fault current limiter. Electr Power Syst Res 122:198–207

    Article  Google Scholar 

  66. Xue S, Gao F, Sun W, Li B (2015) Protection principle for a DC distribution system with a resistive superconductive fault current limiter. Energies 8:4839–4852

    Article  Google Scholar 

  67. Xin Y, Gong WZ, Sun YW, Cui JB, Hong H, Niu XY, Wang HZ, Wang LZ, Li Q, Zhang JY, Wei ZQ (2012) Factory and field tests of a 220 kV/300 MVA statured iron-core superconducting fault current limiter. IEEE Trans Appl Superconduct 23(3):5602305

    Article  Google Scholar 

  68. Hyun OB, Yim SW, Yu SD, Yang SE, Kim WS, Kim HR, Lee GH, Sim J, Park KB (2011) Long-term operation and fault tests of a 22.9 kV hybrid SFCL in the KEPCO test grid. IEEE Trans Appl Superconduct 21(3):2131–2134

    Article  Google Scholar 

  69. Kim HR, Yang SE, Yu SD, Kim H, Kim WS, Park K, Hyun OB, Yang BM, Sim J, Kim YG (2012) Installation and testing of SFCLs. IEEE Trans Appl Supercond 22:704–707

    Google Scholar 

  70. Rashid G, Ali MH (2016) Nonlinear control-based modified BFCL for LVRT capacity enhancement of DFIG-based wind farm. IEEE Trans Energy Convers 32(1):284–295

    Article  MathSciNet  Google Scholar 

  71. Jung BI, Choi HW, Choi HS (2015) Reduction of the power burden of a transformer-type SFCL using a vacuum interrupter. IEEE Trans Appl Supercond 25:4–7

    Article  Google Scholar 

  72. Kim JS, Lim SH, Kim JC (2010) Study on protection coordination of a flux-lock type SFCL with over-current relay. IEEE Trans Appl Supercond 20:1159–1163

    Article  Google Scholar 

  73. Ji T, He X, Li X, Liu K, Zhang M (2014) Performance analysis and research on LVRT of PMSG wind power systems with SDBR. In: Proceedings of the 33rd Chinese control conference 2014 Jul 28, IEEE, pp 6953–6958

    Google Scholar 

  74. Okedu KE, Muyeen SM, Takahashi R, Tamura J (2012) Wind farms fault ride through using DFIG with new protection scheme. IEEE Trans Sustain Energy 3:242–254

    Article  Google Scholar 

  75. Shawon MH, Al Durra A, Caruana C, Muyeen SM (2012) Small signal stability analysis of doubly fed induction generator including SDBR. In: 2012 15th international conference on electrical machines and systems (ICEMS) 2012 Oct 21. IEEE, pp 1–6

    Google Scholar 

  76. Okedu KE (2016) Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor. IET Renew Power Gener 10:1211–1219

    Article  Google Scholar 

  77. Ali MH, Hossain MM (2015) Transient stability improvement of doubly fed induction generator based variable speed wind generator using DC resistive fault current limiter. IET Renew Power Gener 18:803–809

    Google Scholar 

  78. Hussein AA, Hasan Ali M (2016) Comparison among series compensators for transient stability enhancement of doubly fed induction generator based variable speed wind turbines. IET Renew Power Gener 10:116–126

    Article  Google Scholar 

  79. Mardani M, Fathi SH (2015) Fault current limiting in a wind power plant equipped with a DFIG using the interface converter and an optimized located FCL. In: The 6th power electronics, drive systems and technologies conference (PEDSTC2015) 2015 Feb 3. IEEE, pp 328–333

    Google Scholar 

  80. Zhao Y, Krause O, Saha TK, Li Y (2013) Stability enhancement in distribution systems with DFIG-based wind turbine by use of SFCL. In: 2013 Australasian Universities power engineering conference (AUPEC) 2013 Sep 29, IEEE, pp 1–6

    Google Scholar 

  81. Chen L, Zheng F, Deng C, Li Z, Guo F (2015) Fault ride-through capability improvement of DFIG-based wind turbine by employing a voltage-compensation-type active SFCL. Can J Electr Comput Engs 38:132–142

    Article  Google Scholar 

  82. Alam MS, Abido MAY (1898) Fault ride-through capability enhancement of voltage source converter-high voltage direct current systems with bridge type fault current limiters. Energies 2017:10

    Google Scholar 

  83. Alam MS, Hussein A, Abido MA, Al-Hamouz ZM (2017) VSC-HVDC system stability augmentation with bridge type fault current limiter. In: 2017 6th international conference on clean electrical power (ICCEP), IEEE, pp 531–535

    Google Scholar 

  84. Nourmohamadi H, Nazari-Heris M, Sabahi M, Abapour M (2017) A novel structure for bridge-type fault currentlimiter: capacitor based non superconducting FCL. IEEE Trans Power Electron 33:3044–3051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, K.B., Priyadarshi, A., Shankar, S., Rathore, V. (2021). Study of Fault Current Limiter—A Survey. In: Favorskaya, M.N., Mekhilef, S., Pandey, R.K., Singh, N. (eds) Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 661. Springer, Singapore. https://doi.org/10.1007/978-981-15-4692-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4692-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4691-4

  • Online ISBN: 978-981-15-4692-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics