Advertisement

Potential Environmental Effects of Engineered Antimicrobial Surfaces

Chapter
  • 217 Downloads
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

There has been a significant development of nanotechnology and growing interest in the application of engineered antimicrobial surfaces (EAS) in several products over the last decade. Their regular use in number of consumer products has been linked with increased concern for human and environmental health due to the potential toxicological implications of the mostly widely used engineered nanoparticles (ENPs), which is found to have an important role in fabrication of EAS. However, the release of ENPs could cause adverse effect on the environment as well as clinical implications. Despite receiving much attention in research field in recent years, there is still considerable challenge in the analytical procedures, and evaluation of toxicity of ENPs. In this context, the book chapter highlights various types of ENPs exploited commonly for EAS and its harmful effects.

Notes

Acknowledgements

KS is thankful for Senior Research Fellowship and funds from ICMR. JS, BNK and KSP are greatful to Department of Biotechnology (DBTBT/PR21309/MED/32/557/2016) and Department of Science and Technology (DST-SERB- CRG/2018/00033), Govt. of India for funding, ABA is indebted to ICMR extramural grant (Leptos/15/2013-ECD-I).

References

  1. 1.
    Muñoz-Bonilla A, Cerrada ML, Fernández-García M (2013) Introduction to antimicrobial polymeric materials. In: Polymeric materials with antimicrobial activity: from synthesis to application, vol 10, p 1 Google Scholar
  2. 2.
    Pranantyo D, Xu LQ, Kang ET, Chan-Park MB (2018) Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Bio Macromol 19(6):2156–2165Google Scholar
  3. 3.
    Duran N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959CrossRefGoogle Scholar
  4. 4.
    Eduok S, Coulon F (2017) Engineered nanoparticles in the environments: interactions with microbial systems and microbial activity. In: Microbial ecotoxicology. Springer, Cham, pp 63–107Google Scholar
  5. 5.
    Eduok S (2013) Evaluation of the impact of engineered nanoparticles on the operation of wastewater treatment plant. Ecotox Environ Safe 95:1–9CrossRefGoogle Scholar
  6. 6.
    Schumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Lang F (2015) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19CrossRefGoogle Scholar
  7. 7.
    Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  8. 8.
    Wigger H, Hackmann S, Zimmermann T, Köser J, Thöming J, von Gleich A (2015) Influences of use activities and waste management on environmental releases of engineered nanomaterials. Sci Total Environ 535:160–171CrossRefGoogle Scholar
  9. 9.
    Hennebert P, Avellan A, Yan J, Aguerre-Chariol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manage 33:1870–1881CrossRefGoogle Scholar
  10. 10.
    Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71CrossRefGoogle Scholar
  11. 11.
    Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091CrossRefGoogle Scholar
  12. 12.
    Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1CrossRefGoogle Scholar
  13. 13.
    Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Mänttäri M, Sillanpää M (2014) A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 107:163–174CrossRefGoogle Scholar
  14. 14.
    Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204CrossRefGoogle Scholar
  15. 15.
    Eduok S, Martin B, Nocker A, Villa R, Jefferson B, Coulon F (2013) Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges. Ecotox Environ Safe 95:1–9CrossRefGoogle Scholar
  16. 16.
    Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211CrossRefGoogle Scholar
  17. 17.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602CrossRefGoogle Scholar
  18. 18.
    Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227CrossRefGoogle Scholar
  19. 19.
    Trudinger PA, Bubela B (1967) Microorganisms and the natural environment. Miner Depos 2(3):147–157CrossRefGoogle Scholar
  20. 20.
    Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384CrossRefGoogle Scholar
  21. 21.
    Kamal GD, Pfaller MA, Rempe LE, Jebson PJ (1991) Reduced intravascular catheter infection by antibiotic bonding: a prospective, randomized, controlled trial. JAMA 265(18):2364–2368CrossRefGoogle Scholar
  22. 22.
    Santos M, Fonseca A, Mendonça P, Branco R, Serra A, Morais P, Coelho J (2016) Recent developments in antimicrobial polymers: a review. Materials 9(7):599CrossRefGoogle Scholar
  23. 23.
    Hoque J, Akkapeddi P, Yadav V, Manjunath GB, Uppu DS, Konai MM, Yarlagadda V, Sanyal K, Haldar J (2015) Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure–activity relationship, and membrane-active mode of action. ACS Appl Mater Interfaces 7(3):1804–1815CrossRefGoogle Scholar
  24. 24.
    Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390Google Scholar
  25. 25.
    Santos CM, Tria MC, Foster E, Advincula RC, Rodrigues DF (2013) Carbon-based polymer nanocomposites: from material preparation to antimicrobial applications. In: Polymeric materials with antimicrobial activity: from synthesis to applications, vol 13, no 10, p 327Google Scholar
  26. 26.
    Ahmed F, Santos CM, Vergara RAMV, Tria MCR, Advincula R, Rodrigues DF (2012) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46(3):1804–1810CrossRefGoogle Scholar
  27. 27.
    Zhou J, Qi X (2011) Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity. Lett Appl Microbiol 52(1):76–83CrossRefGoogle Scholar
  28. 28.
    Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Van Tassel PR (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale 2(9):1789–1794CrossRefGoogle Scholar
  29. 29.
    Kenawy ER, Abdel-Hay FI, El-Magd AA, Mahmoud Y (2006) Biologically active polymers: VII. Synthesis and antimicrobial activity of some crosslinked copolymers with quaternary ammonium and phosphonium groups. React Funct Polym 66(4):419–429Google Scholar
  30. 30.
    Plascencia-Jatomea M, Viniegra G, Olayo R, Castillo-Ortega M, Shirai K (2003) Effect of chitosan and temperature on spore germination of Aspergillus niger. Macromol Biosci 3(10):582–586CrossRefGoogle Scholar
  31. 31.
    Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172CrossRefGoogle Scholar
  32. 32.
    Goodwin DG Jr, Marsh KM, Sosa IB, Payne JB, Gorham JM, Bouwer EJ, Fairbrother DH (2015) Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes. Environ Sci Technol 49(9):5484–5492CrossRefGoogle Scholar
  33. 33.
    Gao J, Wang Y, Hovsepyan A, Bonzongo JCJ (2011) Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186(1):940–945CrossRefGoogle Scholar
  34. 34.
    Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. JACS 138(7):2064–2077Google Scholar
  35. 35.
    Venkatesan J, Lowe B, Anil S, Manivasagan P, Kheraif AAA, Kang KH, Kim SK (2015) Seaweed polysaccharides and their potential biomedical applications. Starch-Stärke 67(5–6):381–390CrossRefGoogle Scholar
  36. 36.
    Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14(3):308–330CrossRefGoogle Scholar
  37. 37.
    Kim S (2018) Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym SciGoogle Scholar
  38. 38.
    Nunthanid J, Puttipipatkhachorn S, Yamamoto K, Peck GE (2001) Physical properties and molecular behavior of chitosan films. Drug Dev Ind Pharm 27(2):143–157CrossRefGoogle Scholar
  39. 39.
    Zhang H, Neau SH (2001) In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials 22(12):1653–1658CrossRefGoogle Scholar
  40. 40.
    Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226CrossRefGoogle Scholar
  41. 41.
    Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4(8):1399–1416CrossRefGoogle Scholar
  42. 42.
    Whithear KG, Bowtell DD, Ghiocas E, Hughes KL (1983) Evaluation and use of a micro-broth dilution procedure for testing sensitivity of fermentative avian mycoplasmas to antibiotics. Avian Dis 937–949Google Scholar
  43. 43.
    Fernandes JC, Tavaria FK, Soares JC, Ramos ÓS, Monteiro MJ, Pintado ME, Malcata FX (2008) Antimicrobial effects of chitosans and chit oligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25(7):922–928CrossRefGoogle Scholar
  44. 44.
    Chang SH, Lin HTV, Wu GJ, Tsai GJ (2015) pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohyd Polym 134:74–81CrossRefGoogle Scholar
  45. 45.
    Andres Y, Giraud L, Gerente C, Le Cloirec P (2007) Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol 28(12):1357–1363CrossRefGoogle Scholar
  46. 46.
    Mellegård H, Strand SP, Christensen BE, Granum PE, Hardy SP (2011) Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism. Int J Food Microbiol 148(1):48–54CrossRefGoogle Scholar
  47. 47.
    Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6(4):71CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Shareena Dasari TP, Deng H, Yu H (2015) Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health 33(3):286–327CrossRefGoogle Scholar
  49. 49.
    Katas H, Lim CS, Azlan AYHN, Buang F, Busra MFM (2019) Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J 27(2):283–292CrossRefGoogle Scholar
  50. 50.
    Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348CrossRefGoogle Scholar
  51. 51.
    Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686CrossRefGoogle Scholar
  52. 52.
    Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798CrossRefGoogle Scholar
  53. 53.
    Gupta N, Rai DB, Jangid AK, Kulhari H (2019) Use of nanotechnology in antimicrobial therapy. Nanotechnology 46:143CrossRefGoogle Scholar
  54. 54.
    Sportelli M, Izzi M, Volpe A, Clemente M, Picca R, Ancona A, Cioffi N (2018) The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics 7(3):67CrossRefGoogle Scholar
  55. 55.
    Kalwar K, Shan D (2018) Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism—a mini review. Micro Nano Lett 13(3):277–280CrossRefGoogle Scholar
  56. 56.
    Kalwar K, Hu L, Li DL, Shan D (2018) AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym Adv Technol 29(1):394–400CrossRefGoogle Scholar
  57. 57.
    Carpenter AW, Slomberg DL, Rao KS, Schoenfisch MH (2011) Influence of scaffold size on bactericidal activity of nitric oxide-releasing silica nanoparticles. ACS Nano 5(9):7235–7244CrossRefGoogle Scholar
  58. 58.
    Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 3(5):1164–1183CrossRefGoogle Scholar
  59. 59.
    Hegde K, Brar SK, Verma M, Surampalli RY (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. J Nanosci Nanotechnol 1(1):5Google Scholar
  60. 60.
    Andrade-Silva LE, Ferreira-Paim K, Ferreira TB, Vilas-Boas A, Mora DJ, Manzato VM, Araujo NE (2018) Genotypic analysis of clinical and environmental Cryptococcus neoformans isolates from Brazil reveals the presence of VNB isolates and a correlation with biological factors. PLoS ONE 13(3):e0193237CrossRefGoogle Scholar
  61. 61.
    Chauhan R, Reddy A, Abraham J (2015) Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl Nanosci 5(1):63–71CrossRefGoogle Scholar
  62. 62.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331CrossRefGoogle Scholar
  63. 63.
    Siddiqi KS, Rahman A, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13(1):141CrossRefGoogle Scholar
  64. 64.
    Elster C, Fourest E, Baudin F, Larsen K, Cusack S, Ruigrok RW (1994) A small percentage of influenza virus M1 protein contains zinc but zinc does not influence in vitro M1-RNA interaction. J Gen Virol 75(1):37–42CrossRefGoogle Scholar
  65. 65.
    Lee SP, Xiao J, Knutson JR, Lewis MS, Han MK (1997) Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36(1):173–180CrossRefGoogle Scholar
  66. 66.
    Xie J, Li P, Li Y, Wang Y, Wei Y (2009) Morphology control of ZnO particles via aqueous solution route at low temperature. Mater Chem Phys 114(2–3):943–947CrossRefGoogle Scholar
  67. 67.
    Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027–3073Google Scholar
  68. 68.
    Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003CrossRefGoogle Scholar
  69. 69.
    Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870CrossRefGoogle Scholar
  70. 70.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686CrossRefGoogle Scholar
  71. 71.
    Wahab R, Mishra A, Yun SI, Kim YS, Shin HS (2010) Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route. Appl Microbiol Biotechnol 87(5):1917–1925CrossRefGoogle Scholar
  72. 72.
    Hu X, Cook S, Wang P, Hwang HM (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407(8):3070–3072CrossRefGoogle Scholar
  73. 73.
    Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomed 7:6003CrossRefGoogle Scholar
  74. 74.
    Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458CrossRefGoogle Scholar
  75. 75.
    Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074CrossRefGoogle Scholar
  76. 76.
    Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EM (2010) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2):755–761CrossRefGoogle Scholar
  77. 77.
    Luo Z, Chen Z, Qiu Z, Li Y, Du Laing G, Liu A, Yan C (2015) Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation. Chemosphere 120:737–742CrossRefGoogle Scholar
  78. 78.
    Anaya NM, Solomon F, Oyanedel-Craver V (2016) Effects of dysprosium oxide nanoparticles on Escherichia coli. Environ Sci Nano 3(1):67–73CrossRefGoogle Scholar
  79. 79.
    Liu LY, Sun L, Zhong ZT, Zhu J, Song HY (2016) Effects of titanium dioxide nanoparticles on intestinal commensal bacteria. Nucl Sci Tech 27(1):5CrossRefGoogle Scholar
  80. 80.
    Hang MN, Gunsolus IL, Wayland H, Melby ES, Mensch AC, Hurley KR, Hamers RJ (2016) Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem Mater 28(4):1092–1100CrossRefGoogle Scholar
  81. 81.
    Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu CP (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90:1404–1411CrossRefGoogle Scholar
  82. 82.
    Jiang C, Xu X, Meghary M, Naidu R, Chen Z (2015) Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron. Sci Tot Environ 530–531:241–246CrossRefGoogle Scholar
  83. 83.
    Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. J Thin Solid Films 519:1224–1229CrossRefGoogle Scholar
  84. 84.
    He L, Liu Y, Mustapha A, Lin M (2011a) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbial Res 166:207–215Google Scholar
  85. 85.
    He SY, Feng YZ, Ren HX, Zhang Y, Ning G, Lin XG (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soil Sediment 11:1408–1417CrossRefGoogle Scholar
  86. 86.
    Warheit DB, Borm PJ, Hennes C, Lademann J (2007) Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 19:631–643CrossRefGoogle Scholar
  87. 87.
    Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  88. 88.
    Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199Google Scholar
  89. 89.
    Roberts AP, Mount AS, Seda B, Souther J, Quio R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029CrossRefGoogle Scholar
  90. 90.
    Gagné F, Auclair J, Turcotte P, Fournier M, Gagnona C, Sauvé S, Blaise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340Google Scholar
  91. 91.
    Petersen EJ, Huang Q, Weber WJ (2008) Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ Health Perspect 113:1–32Google Scholar
  92. 92.
    Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefGoogle Scholar
  93. 93.
    Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183CrossRefGoogle Scholar
  94. 94.
    Wang C, Liu L-L, Zhang A-T, Xie P, Lu J-J, Zou X-T (2012) Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. Afr J Biotechnol 11:10248–10254CrossRefGoogle Scholar
  95. 95.
    Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201CrossRefGoogle Scholar
  96. 96.
    Soderberg TA, Sunzel B, Holm S, Elmros T, Hallmans G, Sjoberg S (1990) Antibacterial effect of zinc oxide in vitro. Scand J Plast Reconstr Surg Hand Surg 24:193–197CrossRefGoogle Scholar
  97. 97.
    Hernandez-Sierra J, Ruiz F, Pena D, Martinez-Gutierrez F, Martinez AE, Guillen AJ, Tapia-Perez H, Castanon GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed-Nanotechnol 4:237–240CrossRefGoogle Scholar
  98. 98.
    Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE 7(3):e34197CrossRefGoogle Scholar
  99. 99.
    Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludge have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405CrossRefGoogle Scholar
  100. 100.
    Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res 23:4120–4128CrossRefGoogle Scholar
  101. 101.
    Tripathi DK, Tripathi A, Singh S, Singh Y, Vishwakarma K, Yadav G, Dubey NK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7Google Scholar
  102. 102.
    Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K (2009) Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination 248:771–782CrossRefGoogle Scholar
  103. 103.
    Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857CrossRefGoogle Scholar
  104. 104.
    Zhai Y, Hunting ER, Wouters M, Peijnenburg WJGM, Vijver MG (2016) Silver nanoparticles, ions, and shape governing soil microbial functional diversity: nano shapes micro. Front Microbiol 7:1123–1132CrossRefGoogle Scholar
  105. 105.
    Simonin M, Martins JMF, Uzu G, Vince E, Richaume A (2016) Combined study of titanium dioxide nanoparticle transport and toxicity on microbial nitrifying communities under single and repeated exposures in soil columns. Environ Sci Technol 50:10693–10699CrossRefGoogle Scholar
  106. 106.
    Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17(5):421CrossRefGoogle Scholar
  107. 107.
    Keller AA, Mcferran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692CrossRefGoogle Scholar
  108. 108.
    Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CMR, Vasconcelos VM, Keller AA, Lenihan HS (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol 49:12968–12974CrossRefGoogle Scholar
  109. 109.
    Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. SSSA Spec Publ 49:25–38Google Scholar
  110. 110.
    Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fubiger C, Wright C, Cavagnaro TR, Bertsch PM (2015) Effect of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities on biosolid-amended soil. Environ Pollut 206:256–263CrossRefGoogle Scholar
  111. 111.
    Godwin HA, Chopra K, Bradley KA, Cohen Y, Harthorn BH, Hoek EM, Holden P, Keller AA, Lenihan HS, Nisbet RM (2009) The university of california center for the environmental implications of nanotechnology. Environ Sci Technol 43:6453–6457Google Scholar
  112. 112.
    Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1:1161–1194CrossRefGoogle Scholar
  113. 113.
    Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535CrossRefGoogle Scholar
  114. 114.
    Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  115. 115.
    Kizilkaya R, Bayrakli B (2005) Effects of N-enriched sewage sludge on soil enzyme activities. Appl Soil Ecol 30:192–202CrossRefGoogle Scholar
  116. 116.
    Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643CrossRefGoogle Scholar
  117. 117.
    Aengenheister L, Dugershaw BB, Manser P, Wichser A, Schoenenberger R, Wick P, Hesler M, Kohl Y, Straskraba S, Suter MJ, Buerki-Thurnherr T (2019) Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Eur J Pharm Biopharm 142:488–497CrossRefGoogle Scholar
  118. 118.
    Lahive E, Matzke M, Durenkamp M, Lawlor AJ, Thacker SA, Pereira MG, Spurgeon DJ, Unrine JM, Svendsen C, Lofts S (2017) Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms. Environ Sci-Nano 4(1):78–88CrossRefGoogle Scholar
  119. 119.
    Asadishad B, Chahal S, Akbari A, Cianciarelli V, Azodi M, Ghoshal S, Tufenkji N (2018) Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ Sci Technol 52:1908–1918CrossRefGoogle Scholar
  120. 120.
    Loureiro S, Tourinho PS, Cornelis G, Van Den Brink NW, Díez-Ortiz M, Vázquez-Campos S, Van Gestel CA (2018) Nanomaterials as soil pollutants. In: Soil pollution. Academic Press, pp 161–190Google Scholar
  121. 121.
    Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Lowry GV (2013) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112CrossRefGoogle Scholar
  122. 122.
    El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49CrossRefGoogle Scholar
  123. 123.
    Cox A, Venkatachalam P, Sahi S, Sharma N (2016) Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 107:147–163CrossRefGoogle Scholar
  124. 124.
    Nair PM, Chung IM (2014) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res Int 21(14):8858–8869CrossRefGoogle Scholar
  125. 125.
    Nair PM, Chung IM (2015) Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant 37(1):1719Google Scholar
  126. 126.
    You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2018) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soil Sediment 18:211–221CrossRefGoogle Scholar
  127. 127.
    Zhang M, Yang J, Cai Z, Feng Y, Wang Y, Zhang D, Pan X (2019) Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ Sci-Nano 6(3):709–735CrossRefGoogle Scholar
  128. 128.
    Peng C, Zhang W, Gao H, Li Y, Tong X, Li K, Chen Y (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 7:21–25CrossRefGoogle Scholar
  129. 129.
    Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Zinc oxide–engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29(12):2814–2822CrossRefGoogle Scholar
  130. 130.
    Majedi SM, Kelly BC, Lee HK (2014) Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis. J Hazard Mater 264:370–379CrossRefGoogle Scholar
  131. 131.
    Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978CrossRefGoogle Scholar
  132. 132.
    Qin YK, Guo XP, Tou FY, Pan H, Feng JN, Xu J, Chen B, Liu M, Yang Y (2017) Cytotoxicity of TiO2 nanoparticles toward Escherichia coli in an aquatic environment: effects of nanoparticle structural oxygen deficiency and aqueous salinity. Environ Sci Nano 4(5):1178–1188CrossRefGoogle Scholar
  133. 133.
    Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  134. 134.
    Zhang L, Li J, Yang K, Liu J, Lin D (2016) Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut 211:132–140CrossRefGoogle Scholar
  135. 135.
    Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  136. 136.
    Vicario-Parés U, Lacave JM, Reip P, Cajaraville MP, Orbea A (2018) Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper. Ecotoxicology 27:89–101CrossRefGoogle Scholar
  137. 137.
    Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health A 44(14):1485–1495CrossRefGoogle Scholar
  138. 138.
    Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011) Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 188(1–3):428–435CrossRefGoogle Scholar
  139. 139.
    Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48(21):12561–12568CrossRefGoogle Scholar
  140. 140.
    Ali D, Alarifi S, Kumar S, Ahamed M, Siddiqui MA (2012) Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol 124:83–90CrossRefGoogle Scholar
  141. 141.
    Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res-Rev Mutat 773:134–160CrossRefGoogle Scholar
  142. 142.
    John AC, Küpper M, Manders-Groot AM, Debray B, Lacome JM, Kuhlbusch TA (2017) Emissions and possible environmental implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere 8(5):84CrossRefGoogle Scholar
  143. 143.
    Nazaries L, Pan Y, Bodrossy L, Baggs EM, Millard P, Murrell JC, Singh BK (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79(13):4031–4040CrossRefGoogle Scholar
  144. 144.
    Rousk J, Bengtson P (2014) Microbial regulation of global biogeochemical cycles. Front Microbiol 5:103CrossRefGoogle Scholar
  145. 145.
    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799CrossRefGoogle Scholar
  146. 146.
    Hegde K, Brar SK, Verma M, Surampalli RY (2016) Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol Environ Eng 1:5–11CrossRefGoogle Scholar
  147. 147.
    Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78(5):1404–1410CrossRefGoogle Scholar
  148. 148.
    Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918CrossRefGoogle Scholar
  149. 149.
    Kucerka N, Papp-Szabo E, Nieh MP, Harroun TA, Schooling SR, Pencer J, Katsaras J (2008) Effect of cations on the structure of bilayers formed by lipopolysaccharides isolated from Pseudomonas aeruginosa PAO1. J Phys Chem B 112(27):8057–8062CrossRefGoogle Scholar
  150. 150.
    Eduok S, Hendry C, Ferguson R, Martin B, Villa R, Jefferson B, Coulon F (2015) Insights into the effect of mixed engineered nanoparticles on activated sludge performance. FEMS Microbiol Ecol 91(7)Google Scholar
  151. 151.
    Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38(16):4377–4382CrossRefGoogle Scholar
  152. 152.
    Yavuz CT, Mayo JT, William WY, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964–967CrossRefGoogle Scholar
  153. 153.
    Mitrano DM, Motellier S, Clavaguera S, Nowack B (2015) Review of nanomaterials aging and transformation through the life cycle of nano-enhanced products. Environ Int 77:132–147CrossRefGoogle Scholar
  154. 154.
    Taylor AA, Marcus IM, Guysi RL, Walker SL (2015) Metal oxide nanoparticles induce minimal phenotypic changes in a model colon gut microbiota. Environ Eng Sci 32:602–612CrossRefGoogle Scholar
  155. 155.
    Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8(12):e84441CrossRefGoogle Scholar
  156. 156.
    Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolytic solutions. J Colloid Interface Sci 309:126–134CrossRefGoogle Scholar
  157. 157.
    Li F, Wu J, Qin Q, Li Z, Huang X (2010) Controllable synthesis, optical and photocatalytical properties of CuS nanomaterials with hierarchical structures. Powder Technol 198:267–274CrossRefGoogle Scholar
  158. 158.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  159. 159.
    Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli 0157:H7. J Food Sci 74:46–52CrossRefGoogle Scholar
  160. 160.
    Ajitha B, Reddy YA, Reddy PS, Jeon HJ, Ahn CW (2016) Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv 6(42):36171–36179CrossRefGoogle Scholar
  161. 161.
    Rossi LM, Fiorio JL, Garcia MA, Ferraz CP (2018) The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans 47(17):5889–5915CrossRefGoogle Scholar
  162. 162.
    Wang F, Yao J, Liu H, Liu R, Chen H, Yi Z, Yu Q, Ma L, Xing B (2015) Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. J Hazard Mater 137–145Google Scholar
  163. 163.
    García A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Nanomaterial Research Laboratory (NMRL), Nano DivisionYenepoya Research Centre, Yenepoya (Deemed to Be University)Deralakatte, MangaloreIndia
  2. 2.Yenepoya Research Centre, Yenepoya (Deemed to Be University)Deralakatte, MangaloreIndia
  3. 3.Department of DermatologyYenepoya (Deemed to Be University)MangaloreIndia
  4. 4.Centre for Nutrition Studies, Yenepoya (Deemed to Be University)Deralakatte, MangaloreIndia

Personalised recommendations