Advertisement

Antimicrobial Metal-Based Nanomaterials and Their Industrial and Biomedical Applications

Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Infectious illnesses are one of the chiefs led to disease and fatality in the world, and thus, there is the requisite for study on antimicrobial agents. Antibacterial and antifungal metal-based nanocompounds are of great interest to fight microbial pathogens. In this regard, large numbers of studies have been devoted to synthesize and fabricate nanosized fillers and nanocomposites possessing antimicrobial properties. This book chapter aims to give a wide overview in the field of antimicrobial metals, e.g., metal and metal oxides nanostructures, which have been employed for industrial and biomedical applications. To open a window for future research, their synthesis with different approaches, i.e., traditional synthesis and green chemistry, is described. Finally, antimicrobial compounds based on metallic nano-fillers in industrial and medicinal sectors will be presented.

Keywords

Antibacterial Antimicrobial Nanocomposites Nanometals Metal oxides 

References

  1. 1.
    Nas FS, Ali M (2018) Arch Nanomed Open Access J 1:59–64Google Scholar
  2. 2.
    Choi KY, Han HS, Lee ES, Shin JM, Almquist BD, Lee DS, Park JH (2019) Adv Mater 1803549Google Scholar
  3. 3.
    Ashtari K, Nazari H, Ko H, Tebon P, Akhshik M, Akbari M, Alhosseini SN, Mozafari M, Mehravi B, Soleimani M (2019) Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2019.06.001
  4. 4.
    Mirzaei A, Yousefi HR, Falsafi F, Bonyani M, Lee J-H, Kim J-H, Kim HW, Kim SS (2019) Int J Hydrogen EnergyGoogle Scholar
  5. 5.
    Zare EN, Motahari A, Sillanpää M (2018) Environ Res 162:173–195CrossRefGoogle Scholar
  6. 6.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Mater Sci Eng, C 44:278–284CrossRefGoogle Scholar
  7. 7.
    Nazarzadeh Zare E, Lakouraj MM, Baghayeri M (2015) Int J Polym Mater Polym Biomater.  https://doi.org/10.1080/00914037.2014.936588
  8. 8.
    Zare EN, Makvandi P, Tay FR (2019) Carbohydr Polym 212:450–467CrossRefGoogle Scholar
  9. 9.
    Graves J, Thomas M, Ewunkem J (2017) Nanomaterials 7:283CrossRefGoogle Scholar
  10. 10.
    Vega-Jiménez AL, Vázquez-Olmos AR, Acosta-Gío E, Álvarez-Pérez MA (2019) In: Koh KS, Wong VL (eds) Nanoemulsions-properties, fabrications and applications, 1st edn. IntechOpen, pp 1–18Google Scholar
  11. 11.
    Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Adv Ther 1:1700033–1700048CrossRefGoogle Scholar
  12. 12.
    Khairnar SD, Shinde SG, Shrivastava VS (2019) J Nanomed Biother Discov 9:163–170Google Scholar
  13. 13.
    Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA (2017) Int J Nanomed 12:3941–3965CrossRefGoogle Scholar
  14. 14.
    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) J Nanobiotechnol 15:65–85CrossRefGoogle Scholar
  15. 15.
    Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I (2018) Nanomaterials 8:1009–1028CrossRefGoogle Scholar
  16. 16.
    Wang L, Hu C, Shao L (2017) Int J Nanomed 12:1227–1249CrossRefGoogle Scholar
  17. 17.
    Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F (2019) Int J Mol Sci 20:2808–2823Google Scholar
  18. 18.
    Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu L (2020) Acta Biomater 101:69–101CrossRefGoogle Scholar
  19. 19.
    Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2020) J Med Chem 63:122CrossRefGoogle Scholar
  20. 20.
    Lai H-Z, Chen W-Y, Wu C-Y, Chen Y-C, Appl ACS (2015) Mater Interfaces 7:2046–2054CrossRefGoogle Scholar
  21. 21.
    Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR (2010) Appl Environ Microbiol 76:7981–7989CrossRefGoogle Scholar
  22. 22.
    Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Environ Sci Technol 40:6151–6156CrossRefGoogle Scholar
  23. 23.
    Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Environ Sci Technol 43:8423–8429Google Scholar
  24. 24.
    Padmavathy N, Vijayaraghavan R (2008) Sci Technol Adv Mater 9:35004CrossRefGoogle Scholar
  25. 25.
    Li M, Zhu L, Lin D (2011) Environ Sci Technol 45:1977–1983CrossRefGoogle Scholar
  26. 26.
    Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D (2013) ACS Nano 8:374–386CrossRefGoogle Scholar
  27. 27.
    Hoseinnejad M, Jafari SM, Katouzian I (2018) Crit Rev Microbiol 44:161–181CrossRefGoogle Scholar
  28. 28.
    Sekhavat Pour Z, Makvandi P, Ghaemy M (2015) Int J Biol Macromol 80:596–604Google Scholar
  29. 29.
    Dobrucka R, Ankiel M (2019) J Food Saf 39:e12617CrossRefGoogle Scholar
  30. 30.
    Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ (2019) Compr Rev Food Sci Food Saf 18:2009–2024CrossRefGoogle Scholar
  31. 31.
    Lomate GB, Dandi B, Mishra S (2018) Food Packag Shelf Life 16:211–219CrossRefGoogle Scholar
  32. 32.
    Nair IC, Radhakrishnan EK (2019) Int J Biol Macromol 136:395–403CrossRefGoogle Scholar
  33. 33.
    Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S, Gupta VK (2018) Int J Biol Macromol 109:1219–1231CrossRefGoogle Scholar
  34. 34.
    Gour A, Jain NK (2019) Artif Cells Nanomed Biotechnol 47:844–851CrossRefGoogle Scholar
  35. 35.
    Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Nanomed Nanotechnol Biol Med 12:789–799CrossRefGoogle Scholar
  36. 36.
    Pradeep T (2009) Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  37. 37.
    Moustafa MT (2017) Water Sci 31:164–176CrossRefGoogle Scholar
  38. 38.
    Rahimdokht M, Pajootan E, Ranjbar-Mohammadi M (2019) Polym Int 68:134–140CrossRefGoogle Scholar
  39. 39.
    Zille A, Almeida L, Amorim T, Carneiro N, Esteves MF, Silva CJ, Souto AP (2014) Mater Res Express 1:32003CrossRefGoogle Scholar
  40. 40.
    Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  41. 41.
    Silva IO, Ladchumananandasivam R, Nascimento JHO, Silva KKOS, Oliveira FR, Souto AP, Felgueiras HP, Zille A (2019) Nanomaterials 9:1064CrossRefGoogle Scholar
  42. 42.
    Chattopadhyay DP, Patel BH (2010) J Eng Fiber Fabr 5:155892501000500300Google Scholar
  43. 43.
    Paszkiewicz M, Gołąbiewska A, Rajski Ł, Kowal E, Sajdak A, Zaleska-Medynska A (2016) J NanomaterGoogle Scholar
  44. 44.
    Verbič A, Gorjanc M, Simončič B (2019) Coatings 9:550CrossRefGoogle Scholar
  45. 45.
    Patel A, Prajapati P, Boghra R (2011) Asian J Pharm Clin Res 1:40–55Google Scholar
  46. 46.
    Spoiala A, Nedelcu I, Ficai D, Ficai A, Andronescu E (2013) Dig J Nanomater Bios 8:1235Google Scholar
  47. 47.
    Spoiala A, Albu MG, Ficai A, Andronescu E, Voicu G, Ungureanu C (2014) Dig J Nanomater Biostruct 9:1729–1737Google Scholar
  48. 48.
    Leong HJ, Oh S-G (2018) J Ind Eng Chem 66:242–247CrossRefGoogle Scholar
  49. 49.
    Sonia S, Ruckmani K, Sivakumar M (2017) Mater Sci Eng C 79:581–589CrossRefGoogle Scholar
  50. 50.
    Gajbhiye S, Sakharwade S (2016) J Cosmet Dermatol Sci Appl 6:48Google Scholar
  51. 51.
    Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA (2020) J Clin Med 9:542CrossRefGoogle Scholar
  52. 52.
    Battisti M, Vecchione R, Casale C, Pennacchio FA, Lettera V, Jamaledin R, Profeta M, Di Natale C, Imparato G, Urciuolo F (2019) Front Bioeng Biotechnol 7:296CrossRefGoogle Scholar
  53. 53.
    Campardelli R, Della Porta G, Gomez L, Irusta S, Reverchon E, Santamaria J (2014) J Mater Chem B 2:409–417Google Scholar
  54. 54.
    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z (2014) Biomaterials 35:5847–5861CrossRefGoogle Scholar
  55. 55.
    Chen J, Guo Z, Wang H-B, Gong M, Kong X-K, Xia P, Chen Q-W (2013) Biomaterials 34:571–581CrossRefGoogle Scholar
  56. 56.
    Wang Y, Chen L, Liu P (2012) Chem Eur J 18:5935–5943CrossRefGoogle Scholar
  57. 57.
    Bikram M, Gobin AM, Whitmire RE, West JL (2007) J Control Release 123:219–227CrossRefGoogle Scholar
  58. 58.
    Ren L, Chow GM (2003) Mater Sci Eng C 23:113–116CrossRefGoogle Scholar
  59. 59.
    Makvandi P, Wang C, Zare EN, Borzacchiello A, Niu L, Tay FR (2020) Adv Funct Mater.  https://doi.org/10.1002/adfm.201910021
  60. 60.
    Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P (2020) ACS Appl Mater Interfaces 12:3279–3300Google Scholar
  61. 61.
    Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A (2019) Carbohydr Polym 223:115023Google Scholar
  62. 62.
    Zare EN, Makvandi P, Borzacchiello A, Tay FR, Ashtari B, Padil VTV (2019) Chem Commun 55:14871–14885Google Scholar
  63. 63.
    Nair MB, Kretlow JD, Mikos AG, Kasper FK (2011) Curr Opin Biotechnol 22:721–725CrossRefGoogle Scholar
  64. 64.
    Balasundaram G, Webster TJ (2006) Nanomedicine (Lond) 1(2):169–176Google Scholar
  65. 65.
    Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A (2019) Mater Sci Eng C 107:10195Google Scholar
  66. 66.
    Kotela I, Podporska J, Soltysiak E, Konsztowicz KJ, Blazewicz M (2009) Ceram Int 35:2475–2480CrossRefGoogle Scholar
  67. 67.
    Makvandi P, Ghaemy M, Mohseni M (2016) Eur Polym J 74:81–90CrossRefGoogle Scholar
  68. 68.
    Makvandi P, Pollini M, Gallo AL, Maffezzoli A, Esposito Corcione C, Montagna F, Paladini F, Jamaledin R (2017) Polym Adv Technol 29:364–371Google Scholar
  69. 69.
    Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A (2018) Dent Mater 34:851–867CrossRefGoogle Scholar
  70. 70.
    Yang Y, Ren S, Zhang X, Yu Y, Liu C, Yang J, Miao L (2018) Int J Nanomed 13:3751CrossRefGoogle Scholar
  71. 71.
    Sun S, Zhang Y, Zeng D, Zhang S, Zhang F, Yu W (2018) J Mater Sci Mater Med 29:141CrossRefGoogle Scholar
  72. 72.
    Yuan Q, Hein S, Misra RDK (2010) Acta Biomater 6:2732–2739CrossRefGoogle Scholar
  73. 73.
    Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z (2015) Biomaterials 60:62–71CrossRefGoogle Scholar
  74. 74.
    Tang W, Li L, Zeng X (2015) Talanta 131:417–423CrossRefGoogle Scholar
  75. 75.
    Devi R, Yadav S, Pundir CS (2012) Colloids Surf A Physicochem Eng Asp 394:38–45CrossRefGoogle Scholar
  76. 76.
    Montazer M, Keshvari A, Kahali P (2016) Carbohydr Polym 154:257–266CrossRefGoogle Scholar
  77. 77.
    Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X (2017) Int J Biol Macromol 103:234–241CrossRefGoogle Scholar
  78. 78.
    Ahmad Z, Vargas-Reus MA, Bakhshi R, Ryan F, Ren GG, Oktar F, Allaker RP (2012) Methods in enzymology, vol 509. Elsevier, Amsterdam, pp 87–99Google Scholar
  79. 79.
    Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM (2017) J Dent 59:68–77CrossRefGoogle Scholar
  80. 80.
    Fazio E, Scala A, Grimato S, Ridolfo A, Grassi G, Neri F (2015) J Mater Chem B 3:9023–9032CrossRefGoogle Scholar
  81. 81.
    Stipniece L, Narkevica I, Sokolova M, Locs J, Ozolins J (2016) Ceram Int 42:1530–1537CrossRefGoogle Scholar
  82. 82.
    Camargo NHA, de Lima SA, Gemelli E (2012) Am J Biomed Eng 2:41–47CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of ChemistryDamghan UniversityDamghanIran
  2. 2.Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR)NaplesItaly
  3. 3.Department of Chemistry, College of ScienceShahid Chamran University of AhvazAhvazIran

Personalised recommendations