Advertisement

Engineered Phyllosilicate Clay-Based Antimicrobial Surfaces

Chapter
  • 232 Downloads
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Phyllosilicates are widely used as a platform for producing effective antimicrobial materials. They are two-dimensional nanoparticles and exist as layered silicates. The interlayer sodium ions can be exchanged with various biochemical moieties to produce highly efficient antimicrobial systems. This chapter discusses organoclays, artificial nanoclay, hybrid nanoclay and clay–polymer nanocomposites used for bactericidal activities.

Keywords

Phyllosilicates Organoclay Clay-hybrids Laponite Antimicrobial Polymer nanocomposites 

Notes

Acknowledgements

The authors are grateful to the facilities provided by the International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, School of Pure and Applied Physics and School of Biosciences, Mahatma Gandhi University.

References

  1. 1.
    Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455CrossRefGoogle Scholar
  2. 2.
    Quesada-González D, Merkoçi A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47(13):4697–4709CrossRefGoogle Scholar
  3. 3.
    Barreca D, Gri F, Gasparotto A, Carraro G, Bigiani L, Altantzis T, Žener B, Štangar UL, Alessi B, Padmanaban DB (2019) Multi-functional MnO2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. Nanoscale 11(1):98–108CrossRefGoogle Scholar
  4. 4.
    Guo H, Barnard AS (2013) Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J Mater Chem A 1(1):27–42CrossRefGoogle Scholar
  5. 5.
    Hough R, Noble R, Hitchen G, Hart R, Reddy S, Saunders M, Clode P, Vaughan D, Lowe J, Gray D (2008) Naturally occurring gold nanoparticles and nanoplates. Geology 36(7):571–574CrossRefGoogle Scholar
  6. 6.
    Theng BK, Yuan G (2008) Nanoparticles in the soil environment. Elements 4(6):395–399CrossRefGoogle Scholar
  7. 7.
    Ermolin MS, Fedotov PS, Malik NA, Karandashev VK (2018) Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 200:16–22CrossRefGoogle Scholar
  8. 8.
    Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM (2019) Natural, incidental, and engineered nanomaterials and their impacts on the earth system. Science 363(6434):eaau8299Google Scholar
  9. 9.
    Kumar P, Kumar A, Lead JR (2012) Nanoparticles in the Indian environment: known, unknowns and awareness. ACS PublicationsGoogle Scholar
  10. 10.
    Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev 287:64–78CrossRefGoogle Scholar
  11. 11.
    Ealias AM, Saravanakumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 032019Google Scholar
  12. 12.
    Pugazhendhi A, Edison TNJI, Karuppusamy I, Kathirvel B (2018) Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539(1–2):104–111CrossRefGoogle Scholar
  13. 13.
    Pan K, Zhong Q (2016) Organic nanoparticles in foods: fabrication, characterization, and utilization. Annu Rev Food Sci Technol 7:245–266CrossRefGoogle Scholar
  14. 14.
    Pang X, He Y, Jung J, Lin Z (2016) 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353(6305):1268–1272CrossRefGoogle Scholar
  15. 15.
    Álvarez-Docio C, Reinosa J, Del Campo A, Fernández J (2019) Investigation of thermal stability of 2D and 3D CoAl2O4 particles in core-shell nanostructures by Raman spectroscopy. J Alloy Compd 779:244–254CrossRefGoogle Scholar
  16. 16.
    Zhang N, Huang Y, Wang M (2018) 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Compos B Eng 136:135–142CrossRefGoogle Scholar
  17. 17.
    Li Z, Li M, Ashok J, Kawi S (2019) NiCo@ NiCo phyllosilicate@ CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers Manag 180:822–830CrossRefGoogle Scholar
  18. 18.
    Sunil B, Pushpalatha M, Basavaprasad VMHT (2018) Modified nano-clay formulation and their application. IJCS 6(4):705–710Google Scholar
  19. 19.
    Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compd 4(10):22–28CrossRefGoogle Scholar
  20. 20.
    Komadel P (2003) Chemically modified smectites. De GruyterGoogle Scholar
  21. 21.
    Tomás H, Alves CS, Rodrigues J (2018) Laponite®: a key nanoplatform for biomedical applications? Nanomed Nanotechnol Biol Med 14(7):2407–2420CrossRefGoogle Scholar
  22. 22.
    Additives B (2014) Instruments. Laponite performance additives, technical information B-RI 21. BYK Additives, Ltd., CheshireGoogle Scholar
  23. 23.
    Dawson JI, Kanczler JM, Yang XB, Attard GS, Oreffo RO (2011) Clay gels for the delivery of regenerative microenvironments. Adv Mater 23(29):3304–3308CrossRefGoogle Scholar
  24. 24.
    Tawari SL, Koch DL, Cohen C (2001) Electrical double-layer effects on the Brownian diffusivity and aggregation rate of laponite clay particles. J Colloid Interface Sci 240(1):54–66CrossRefGoogle Scholar
  25. 25.
    Cummins HZ (2007) Liquid, glass, gel: the phases of colloidal laponite. J Non-Cryst Solids 353(41–43):3891–3905CrossRefGoogle Scholar
  26. 26.
    Thompson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151(1):236–243CrossRefGoogle Scholar
  27. 27.
    Mohanty RP, Joshi YM (2016) Chemical stability phase diagram of aqueous laponite dispersions. Appl Clay Sci 119:243–248CrossRefGoogle Scholar
  28. 28.
    Jatav S, Joshi YM (2014) Chemical stability of laponite in aqueous media. Appl Clay Sci 97:72–77CrossRefGoogle Scholar
  29. 29.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRefGoogle Scholar
  30. 30.
    Xiao S, Castro R, Maciel D, Gonçalves M, Shi X, Rodrigues J, Tomás H (2016) Fine tuning of the pH-sensitivity of laponite–doxorubicin nanohybrids by polyelectrolyte multilayer coating. Mater Sci Eng C 60:348–356CrossRefGoogle Scholar
  31. 31.
    Wu Y, Guo R, Wen S, Shen M, Zhu M, Wang J, Shi X (2014) Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J Mater Chem B 2(42):7410–7418CrossRefGoogle Scholar
  32. 32.
    Felbeck T, Behnke T, Hoffmann K, Grabolle M, Lezhnina MM, Kynast UH, Resch-Genger U (2013) Nile-Red–nanoclay hybrids: red emissive optical probes for use in aqueous dispersion. Langmuir 29(36):11489–11497CrossRefGoogle Scholar
  33. 33.
    Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung T (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13(10):3516–3523Google Scholar
  34. 34.
    Ma J, Yu Z-Z, Zhang Q-X, Xie X-L, Mai Y-W, Luck I (2004) A novel method for preparation of disorderly exfoliated epoxy/clay nanocomposite. Chem Mater 16(5):757–759CrossRefGoogle Scholar
  35. 35.
    Wang L, Liu W, Li Y, Wu P, Shen S (2019) Mechanical behaviors of methane hydrate-bearing sediments using montmorillonite clay. Energy Procedia 158:5281–5286CrossRefGoogle Scholar
  36. 36.
    Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279(1):1–9CrossRefGoogle Scholar
  37. 37.
    Kornmann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure. Polymer 42(4):1303–1310CrossRefGoogle Scholar
  38. 38.
    Yu ZZ, Yang M, Zhang Q, Zhao C, Mai YW (2003) Dispersion and distribution of organically modified montmorillonite in nylon-66 matrix. J Polym Sci Part B Polym Phys 41(11):1234–1243CrossRefGoogle Scholar
  39. 39.
    Kawasumi M (2004) The discovery of polymer-clay hybrids. J Polym Sci Part A Polym Chem 42(4):819–824CrossRefGoogle Scholar
  40. 40.
    Babu SS, Kalarikkal N, Thomas S, Radhakrishnan E (2018) Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly (l-lactic acid) as evidenced by structural features. Appl Clay Sci 153:198–204CrossRefGoogle Scholar
  41. 41.
    Babu SS, Mathew S, Kalarikkal N, Thomas S (2016) Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films. 3 Biotech 6(2):249Google Scholar
  42. 42.
    Malachová K, Praus P, Pavlíčková Z, Turicová M (2009) Activity of antibacterial compounds immobilised on montmorillonite. Appl Clay Sci 43(3–4):364–368CrossRefGoogle Scholar
  43. 43.
    Parolo M, Fernández L, Zajonkovsky I, Sánchez M, Bastion M (2011) Antibacterial activity of materials synthesized from clay minerals. In: Science against microbial pathogens: communicating current research and technological advances. Formatex, microbiology series, vol 3, pp 144–151 Google Scholar
  44. 44.
    Costa C, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148(3):164–167Google Scholar
  45. 45.
    Roy A, Joshi M, Butola B, Ghosh S (2020) Evaluation of biological and cytocompatible properties in nano silver-clay based polyethylene nanocomposites. J Hazard Mater 384:121309CrossRefGoogle Scholar
  46. 46.
    Kheiralla ZMH, Rushdy AA, Betiha MA, Yakob NAN (2014) High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave-assisted method. J Nanopart Res 16(8):2560CrossRefGoogle Scholar
  47. 47.
    Zhang GK, Ding XM, He FS, Yu XY, Zhou J, Hu YJ, Xie JW (2008) Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir 24(3):1026–1030CrossRefGoogle Scholar
  48. 48.
    Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Deliv Sci Technol 39:200–209CrossRefGoogle Scholar
  49. 49.
    Herrera P, Burghardt R, Phillips T (2000) Adsorption of s by cetylpyridinium-exchanged montmorillonite clays. Vet Microbiol 74(3):259–272CrossRefGoogle Scholar
  50. 50.
    Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, Bhatt AS, Barvaliya YK, Dave GS, Kothari RK (2014) Biodegradable gelatin–ciprofloxacin–montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B 122:175–183CrossRefGoogle Scholar
  51. 51.
    Gulen B, Demircivi P (2020) Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2: 1 dioctahedral clay structure: Box-Behnken experimental design. J Mol Struct 127659Google Scholar
  52. 52.
    Kaur N (2020) Nanoantimicrobials: an emerging technological approach in food preservation. In: Technological developments in food preservation, processing, and storage. IGI Global, pp 146–165Google Scholar
  53. 53.
    Hamilton A, Hutcheon G, Roberts M, Gaskell E (2014) Formulation and antibacterial profiles of clay–ciprofloxacin composites. Appl Clay Sci 87:129–135CrossRefGoogle Scholar
  54. 54.
    Kalwar K, Zhang X, Bhutto MA, Dali L, Shan D (2017) Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies. Mater Res Express 4(12):125401CrossRefGoogle Scholar
  55. 55.
    Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 25(11):2513–2526CrossRefGoogle Scholar
  56. 56.
    Wang S, Wu Y, Guo R, Huang Y, Wen S, Shen M, Wang J, Shi X (2013) Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 29(16):5030–5036CrossRefGoogle Scholar
  57. 57.
    Tong G, Yulong M, Peng G, Zirong X (2005) Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet Microbiol 105(2):113–122CrossRefGoogle Scholar
  58. 58.
    Hu C, Xu Y, Xia M, Xiong L, Xu Z (2007) Effects of Cu2+-exchanged montmorillonite on growth performance, microbial ecology and intestinal morphology of Nile tilapia (Oreochromis niloticus). Aquaculture 270(1–4):200–206CrossRefGoogle Scholar
  59. 59.
    Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf B 108:358–365CrossRefGoogle Scholar
  60. 60.
    Tang X, Dai J, Sun H, Nabanita S, Petr S, Tang L, Cheng Q, Wang D, Wei J (2018) Copper-doped nano laponite coating on poly (butylene succinate) scaffold with antibacterial properties and cytocompatibility for biomedical application. J Nanomater 2018Google Scholar
  61. 61.
    Bujdák J, Jurečeková J, Bujdáková H, Lang K, Šeršeň F (2009) Clay mineral particles as efficient carriers of methylene blue used for antimicrobial treatment. Environ Sci Technol 43(16):6202–6207CrossRefGoogle Scholar
  62. 62.
    Chakraborty U, Singha T, Chianelli RR, Hansda C, Paul PK (2017) Organic-inorganic hybrid layer-by-layer electrostatic self-assembled film of cationic dye Methylene Blue and a clay mineral: Spectroscopic and Atomic Force microscopic investigations. J Lumin 187:322–332CrossRefGoogle Scholar
  63. 63.
    Yilmaz YY, Yalcinkaya EE, Demirkol DO, Timur S (2020) 4-aminothiophenol-intercalated montmorillonite: organic-inorganic hybrid material as an immobilization support for biosensors. Sens Actuators B Chem 127665Google Scholar
  64. 64.
    Ganguly S, Dana K, Ghatak S (2009) Thermogravimetric study of n-alkylammonium-intercalated montmorillonites of different cation exchange capacity. J Therm Anal Calorim 100(1):71–78CrossRefGoogle Scholar
  65. 65.
    Xi Y, Frost RL, He H (2007) Modification of the surfaces of Wyoming montmorillonite by the cationic surfactants alkyl trimethyl, dialkyl dimethyl, and trialkyl methyl ammonium bromides. J Colloid Interface Sci 305(1):150–158CrossRefGoogle Scholar
  66. 66.
    He A, Wang L, Li J, Dong J, Han CC (2006) Preparation of exfoliated isotactic polypropylene/alkyl-triphenylphosphonium-modified montmorillonite nanocomposites via in situ intercalative polymerization. Polymer 47(6):1767–1771CrossRefGoogle Scholar
  67. 67.
    Mustapha S, Ndamitso M, Abdulkareem A, Tijani J, Shuaib D, Ajala A, Mohammed A (2020) Application of TiO2 and ZnO nanoparticles immobilized on clay in wastewater treatment: a review. Appl Water Sci 10(1):1–36CrossRefGoogle Scholar
  68. 68.
    Mulewa W, Tahir M, Amin NAS (2017) MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production. Chem Eng J 326:956–969CrossRefGoogle Scholar
  69. 69.
    Ye J, Li X, Hong J, Chen J, Fan Q (2015) Photocatalytic degradation of phenol over ZnO nanosheets immobilized on montmorillonite. Mater Sci Semicond Process 39:17–22CrossRefGoogle Scholar
  70. 70.
    Hu C, Gu L, Luan Z, Song J, Zhu K (2012) Effects of montmorillonite–zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim Feed Sci Technol 177(1–2):108–115CrossRefGoogle Scholar
  71. 71.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63CrossRefGoogle Scholar
  72. 72.
    Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772CrossRefGoogle Scholar
  73. 73.
    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35CrossRefGoogle Scholar
  74. 74.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734CrossRefGoogle Scholar
  75. 75.
    Bower C (1949) Studies on the form and availability of organic soil phosphorous. IOWA Agric Exp Stat Res Bull 362–339Google Scholar
  76. 76.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8(5):1179–1184CrossRefGoogle Scholar
  77. 77.
    Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1995) Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J Appl Polym Sci 55(1):119–123CrossRefGoogle Scholar
  78. 78.
    Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5(12):1694–1696CrossRefGoogle Scholar
  79. 79.
    Mehrotra V, Giannelis E (1989) Conducting molecular multilayers: intercalation of conjugated polymers in layered media. MRS Online Proc Libr Arch 171Google Scholar
  80. 80.
    Wypych F, Bergaya F, Schoonheydt RA (2018) From polymers to clay polymer nanocomposites. In: Developments in clay science, vol 9. Elsevier, pp 331–359Google Scholar
  81. 81.
    Bee S-L, Abdullah M, Bee S-T, Sin LT, Rahmat A (2018) Polymer nanocomposites based on silylated-montmorillonite: a review. Prog Polym Sci 85:57–82CrossRefGoogle Scholar
  82. 82.
    Rodríguez FJ, Abarca RL, Bruna JE, Moya PE, Galotto MJ, Guarda A, Padula M (2019) Effect of organoclay and preparation method on properties of antimicrobial cellulose acetate films. Polym Compos 40(6):2311–2319CrossRefGoogle Scholar
  83. 83.
    Gohari DP, Kalaee MR, Sharif A (2019) Interfacial in situ polymerization of layered-silicate/poly (hexamethylene isophthalamide) nanocomposites. J Inorg Organomet Polym Mater 1–9Google Scholar
  84. 84.
    Reddy KR, Reddy CV, Babu B, Ravindranadh K, Naveen S, Raghu AV (2019) Recent advances in layered clays–intercalated polymer nanohybrids: synthesis strategies, properties, and their applications. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 197–218Google Scholar
  85. 85.
    Chen H-B, Schiraldi DA (2019) Flammability of polymer/clay aerogel composites: an overview. Polym Rev 59(1):1–24CrossRefGoogle Scholar
  86. 86.
    Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42(2):807–813CrossRefGoogle Scholar
  87. 87.
    Zhu TT, Zhou CH, Kabwe FB, Wu QQ, Li CS, Zhang JR (2019) Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Appl Clay Sci 169:48–66CrossRefGoogle Scholar
  88. 88.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1)Google Scholar
  89. 89.
    Reddy AB, Manjula B, Jayaramudu T, Sadiku E, Babu PA, Selvam SP (2016) 5-Fluorouracil loaded chitosan–PVA/Na+ MMT nanocomposite films for drug release and antimicrobial activity. Nano-Micro Lett 8(3):260–269CrossRefGoogle Scholar
  90. 90.
    Wang X, Du Y, Yang J, Tang Y, Luo J (2008) Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J Biomed Mater Res Part A 84(2):384–390CrossRefGoogle Scholar
  91. 91.
    Mondal D, Bhowmick B, Mollick MMR, Maity D, Ranjan Saha N, Rangarajan V, Rana D, Sen R, Chattopadhyay D (2014) Antimicrobial activity and biodegradation behavior of poly (butylene adipate-co-terephthalate)/clay nanocomposites. J Appl Polym Sci 131(7)Google Scholar
  92. 92.
    Gunes S, Tamburaci S, Tihminlioglu F (2020) A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. J Mater Sci Mater Med 31(1):7Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  2. 2.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  3. 3.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia
  4. 4.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations