Carbon Nanotube-Based Antimicrobial and Antifouling Surfaces

Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


Carbon nanotubes (CNTs) are versatile nanomaterials with outstanding properties that can be used in different fields. This chapter reviews the use of single- and multi-walled CNTs in the development of antimicrobial and antifouling surfaces. The performance of CNT-containing surfaces seems to depend on a multiplicity of factors that can be conjugated in order to improve their activity. A substantially higher body of knowledge has accumulated regarding the use of multi-walled CNTs and their composites and exciting developments in CNT modification and combination with different molecules are being reported. Although some of the available results are promising, contradictory findings suggest that further investigation is needed to validate the antimicrobial and antifouling activities of developed surfaces in a wider range of conditions. The existing evidence seems to indicate that CNTs and their composites will remain a promising strategy to delay bacterial adhesion and reduce biofilm formation in very different environments.


Single- and multi-walled carbon nanotubes Nanocomposites Antimicrobial activity Antifouling activity Surfaces 



This work was financially supported by: Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC) and by: Project PTDC/BII-BIO/29589/2017—POCI-01-0145-FEDER-029589—funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES. R. Teixeira-Santos acknowledges the receipt of a junior researcher fellowship from this project.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  2. 2.
    Upadhyayula VKK, Gadhamshetty V (2010) Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv 28(6):802–816CrossRefGoogle Scholar
  3. 3.
    Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Interface Sci 357(2):354–365CrossRefGoogle Scholar
  4. 4.
    Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012CrossRefGoogle Scholar
  5. 5.
    Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomater 5(2):607–612CrossRefGoogle Scholar
  6. 6.
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413CrossRefGoogle Scholar
  7. 7.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon Nanotubes–the Route Toward Applications. Science 297(5582):787CrossRefGoogle Scholar
  8. 8.
    He H et al (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290Google Scholar
  9. 9.
    Aslan S et al (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2(9):1789–1794CrossRefGoogle Scholar
  10. 10.
    Hirschfeld J et al (2017) Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomed: Nanotechnol Biol Med 13(4):1587–1593Google Scholar
  11. 11.
    Saliev T (2019) The Advances in biomedical applications of carbon nanotubes. C–J Carbon Res 5(2)Google Scholar
  12. 12.
    Chaudhari AA et al (2019) A three-dimensional human skin model to evaluate the inhibition of Staphylococcus aureus by antimicrobial peptide-functionalized silver carbon nanotubes. J Biomater Appl 33(7):924–934CrossRefGoogle Scholar
  13. 13.
    Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20(6):750–759CrossRefGoogle Scholar
  14. 14.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JH, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29(2):169–188CrossRefGoogle Scholar
  15. 15.
    Vassallo J, Besinis A, Boden R, Handy RD (2018) The minimum inhibitory concentration (MIC) assay with Escherichia coli: an early tier in the environmental hazard assessment of nanomaterials? Ecotoxicol Environ Saf 162:633–646CrossRefGoogle Scholar
  16. 16.
    Beigbeder A et al (2008) Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 24(4):291–302CrossRefGoogle Scholar
  17. 17.
    Martinelli E et al (2011) Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. Biofouling 27(5):529–541CrossRefGoogle Scholar
  18. 18.
    Sun Y, Zhang Z (2016) Anti-biofouling property studies on carboxyl-modified multi-walled carbon nanotubes filled PDMS nanocomposites. World J Microbiol Biotechnol 32(9):148CrossRefGoogle Scholar
  19. 19.
    Fan X, Liu Y, Wang X, Quan X, Chen S (2019) Improvement of antifouling and antimicrobial abilities on silver–carbon nanotube based membranes under electrochemical assistance. Environ Sci Technol 53(9):5292–5300CrossRefGoogle Scholar
  20. 20.
    Cruz-Silva R et al (2019) New insights in the natural organic matter fouling mechanism of polyamide and nanocomposite multiwalled carbon nanotubes-polyamide membranes. Environ Sci Technol 53(11):6255–6263CrossRefGoogle Scholar
  21. 21.
    Hassouna MEM, ElBably MA, Mohammed AN, Nasser MAG (2016) Assessment of carbon nanotubes and silver nanoparticles loaded clays as adsorbents for removal of bacterial contaminants from water sources. J Water Health 15(1):133–144CrossRefGoogle Scholar
  22. 22.
    Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143CrossRefGoogle Scholar
  23. 23.
    Wick P et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131CrossRefGoogle Scholar
  24. 24.
    Chen H et al (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16):2735–2746CrossRefGoogle Scholar
  25. 25.
    Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-Walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673CrossRefGoogle Scholar
  26. 26.
    Nagai H, Toyokuni S (2012) Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: Shedding light on fiber entry mechanism. Cancer Sci 103(8):1378–1390CrossRefGoogle Scholar
  27. 27.
    Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials (Basel, Switzerland) 10(9):1066CrossRefGoogle Scholar
  28. 28.
    Johnston HJ et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246CrossRefGoogle Scholar
  29. 29.
    Liu S et al (2010) Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2(12):2744–2750CrossRefGoogle Scholar
  30. 30.
    Olivi M et al (2013) Inhibition of microbial growth by carbon nanotube networks. Nanoscale 5(19):9023–9029CrossRefGoogle Scholar
  31. 31.
    Young Y-F et al (2012) Toxicity mechanism of carbon nanotubes on Escherichia coli. Mater Chem Phys 134(1):279–286CrossRefGoogle Scholar
  32. 32.
    Zhang Q, Nghiem J, Silverberg GJ, Vecitis CD (2015) Semiquantitative performance and mechanism evaluation of carbon nanomaterials as cathode coatings for microbial fouling reduction. Appl Environ Microbiol 81(14):4744–4755CrossRefGoogle Scholar
  33. 33.
    Hartono MR, Kushmaro A, Chen X, Marks RS (2018) Probing the toxicity mechanism of multiwalled carbon nanotubes on bacteria. Environ Sci Pollut Res 25(5):5003–5012CrossRefGoogle Scholar
  34. 34.
    Malek I et al (2016) Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria. J Mater Chem B 4(31):5228–5235CrossRefGoogle Scholar
  35. 35.
    Wang H et al (2006) Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 128(41):13364–13365CrossRefGoogle Scholar
  36. 36.
    Zhu Z, Wang Z, Li S, Yuan X (2019) Antimicrobial strategies for urinary catheters. J Biomed Mater Res Part A 107(2):445–467CrossRefGoogle Scholar
  37. 37.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  38. 38.
    Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong Antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8(7):1896–1901CrossRefGoogle Scholar
  39. 39.
    Levashov PA, Sedov SA, Shipovskov S, Belogurova NG, Levashov AV (2010) Quantitative turbidimetric assay of enzymatic gram-negative bacteria lysis. Anal Chem 82(5):2161–2163CrossRefGoogle Scholar
  40. 40.
    Wild P et al (1997) Reevaluation of the effect of lysoyzme on Escherichia coli employing ultrarapid freezing followed by cryoelectronmicroscopy or freeze substitution. Microsc Res Tech 39(3):297–304CrossRefGoogle Scholar
  41. 41.
    Ahmed F et al (2012) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46(3):1804–1810CrossRefGoogle Scholar
  42. 42.
    Aslan S et al (2012) Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. J Colloid Interface Sci 388(1):268–273CrossRefGoogle Scholar
  43. 43.
    Goodwin DG et al (2015) Interactions of microorganisms with polymer nanocomposite surfaces containing oxidized carbon nanotubes. Environ Sci Technol 49(9):5484–5492CrossRefGoogle Scholar
  44. 44.
    Sah U, Sharma K, Chaudhri N, Sankar M, Gopinath P (2018) Antimicrobial photodynamic therapy: single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus. Colloids Surf B 162:108–117CrossRefGoogle Scholar
  45. 45.
    Cajero-Zul LR et al (2019) Evaluation of the resistance to bacterial growth of star-shaped poly(epsilon-caprolactone)-co-poly(ethylene glycol) grafted onto functionalized carbon nanotubes nanocomposites. J Biomater Sci-Polym Edn 30(3):163–189CrossRefGoogle Scholar
  46. 46.
    Tiraferri A, Vecitis CD, Elimelech M (2011) Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl Mater Interfaces 3(8):2869–2877CrossRefGoogle Scholar
  47. 47.
    Neelgund GM, Oki A (2011) Deposition of silver nanoparticles on dendrimer functionalized multiwalled carbon nanotubes: synthesis, characterization and antimicrobial activity. J Nanosci Nanotechnol 11(4):3621–3629CrossRefGoogle Scholar
  48. 48.
    Neelgund GM, Oki A, Luo Z (2012) Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloids Surf B Biointerfaces 100:215–221CrossRefGoogle Scholar
  49. 49.
    Ding L, Wang H, Liu D, Zeng X-A, Mao Y (2020) Bacteria capture and inactivation with functionalized multi-walled carbon nanotubes (MWCNTs). J Nanosci Nanotechnol 20(4):2055–2062CrossRefGoogle Scholar
  50. 50.
    Zardini HZ et al (2014) Microbial toxicity of ethanolamines—multiwalled carbon nanotubes. J Biomed Mater Res Part A 102(6):1774–1781CrossRefGoogle Scholar
  51. 51.
    Gilbertson LM, Goodwin DG, Taylor AD, Pfefferle L, Zimmerman JB (2014) Toward tailored functional design of multi-walled carbon nanotubes (MWNTs): electrochemical and antimicrobial activity enhancement via oxidation and selective reduction. Environ Sci Technol 48(10):5938–5945CrossRefGoogle Scholar
  52. 52.
    Jung JH, Hwang GB, Lee JE, Bae GN (2011) Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27(16):10256–10264CrossRefGoogle Scholar
  53. 53.
    Mohan R, Shanmugharaj AM, Sung Hun R (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B Appl Biomater 96B(1):119–126CrossRefGoogle Scholar
  54. 54.
    Seo Y et al (2014) Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int J Nanomedicine 9:4621–4629Google Scholar
  55. 55.
    Rusen E et al (2014) Design of antimicrobial membrane based on polymer colloids/multiwall carbon nanotubes hybrid material with silver nanoparticles. ACS Appl Mater Interfaces 6(20):17384–17393CrossRefGoogle Scholar
  56. 56.
    Sui M, Zhang L, Sheng L, Huang S, She L (2013) Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ 452–453:148–154CrossRefGoogle Scholar
  57. 57.
    Karthika V, Arumugam A (2017) Synthesis and characterization of MWCNT/TiO2/Au nanocomposite for photocatalytic and antimicrobial activity. IET Nanobiotechnol 11(1):113–118CrossRefGoogle Scholar
  58. 58.
    Grover N, Borkar IV, Dinu CZ, Kane RS, Dordick JS (2012) Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enzyme Microbial Technology 50(6):271–279CrossRefGoogle Scholar
  59. 59.
    Venkatesan J, Jayakumar R, Mohandas A, Bhatnagar I, Kim SK (2014) Antimicrobial activity of chitosan–carbon nanotube hydrogels. Materials (Basel) 7(5):3946–3955CrossRefGoogle Scholar
  60. 60.
    Mohamed NA, Al-Harby NF, Almarshed MS (2019) Synthesis and characterization of novel trimellitic anhydride isothiocyanate-cross linked chitosan hydrogels modified with multi-walled carbon nanotubes for enhancement of antimicrobial activity. Int J Biol Macromol 132:416–428CrossRefGoogle Scholar
  61. 61.
    Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63CrossRefGoogle Scholar
  62. 62.
    Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromol 4(6):1457–1465CrossRefGoogle Scholar
  63. 63.
    Ji Y et al (2018) Effect of CNT/PDMS nanocomposites on the dynamics of pioneer bacterial communities in the natural biofilms of seawater. Materials (Basel, Switzerland) 11(6):902CrossRefGoogle Scholar
  64. 64.
    Kim K-I et al (2019) Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 9(1):4921CrossRefGoogle Scholar
  65. 65.
    Jing H, Sahle-Demessie E, Sorial GA (2018) Inhibition of biofilm growth on polymer-MWCNTs composites and metal surfaces. Sci Total Environ 633:167–178CrossRefGoogle Scholar
  66. 66.
    Zhang Q et al (2017) Interlaced CNT electrodes for bacterial fouling reduction of microfiltration membranes. Environ Sci Technol 51(16):9176–9183CrossRefGoogle Scholar
  67. 67.
    Lin C-W et al (2019) Direct grafting of tetraaniline via perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces. Chem Sci 10(16):4445–4457CrossRefGoogle Scholar
  68. 68.
    Liu Y-L, Chang Y, Chang Y-H, Shih Y-J (2010) Preparation of amphiphilic polymer-functionalized carbon nanotubes for low-protein-adsorption surfaces and protein-resistant membranes. ACS Appl Mater Interfaces 2(12):3642–3647CrossRefGoogle Scholar
  69. 69.
    Celik E, Park H, Choi H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45(1):274–282CrossRefGoogle Scholar
  70. 70.
    Feng Y, Wang K, Davies CHJ, Wang H (2015) Carbon nanotube/alumina/polyethersulfone hybrid hollow fiber membranes with enhanced mechanical and anti-fouling properties. Nanomaterials (Basel, Switzerland) 5(3):1366–1378CrossRefGoogle Scholar
  71. 71.
    Abidin MNZ et al (2016) Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl 68:540–550CrossRefGoogle Scholar
  72. 72.
    Takizawa Y et al (2017) Antiorganic fouling and low-protein adhesion on reverse-osmosis membranes made of carbon nanotubes and polyamide nanocomposite. ACS Appl Mater Interfaces 9(37):32192–32201CrossRefGoogle Scholar
  73. 73.
    Liu Y et al (2017) Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation. Nanoscale 9(22):7508–7518CrossRefGoogle Scholar
  74. 74.
    Kitano H et al (2019) Enhanced antifouling feed spacer made from a carbon nanotube-polypropylene nanocomposite. ACS Omega 4(13):15496–15503CrossRefGoogle Scholar
  75. 75.
    Vatanpour V, Ghadimi A, Karimi A, Khataee A, Yekavalangi ME (2018) Antifouling polyvinylidene fluoride ultrafiltration membrane fabricated from embedding polypyrrole coated multiwalled carbon nanotubes. Mater Sci Eng, C 89:41–51CrossRefGoogle Scholar
  76. 76.
    Yaghoubi Z, Parsa JB (2019) Preparation of thermo-responsive PNIPAAm-MWCNT membranes and evaluation of its antifouling properties in dairy wastewater. Mater Sci Eng C 103:109779CrossRefGoogle Scholar
  77. 77.
    Gunawan P et al (2011) Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5(12):10033–10040CrossRefGoogle Scholar
  78. 78.
    Macevele LE, Moganedi KLM, Magadzu T (2017) Investigation of antibacterial and fouling resistance of silver and multi-walled carbon nanotubes doped poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane. Membranes (Basel), 7(3)Google Scholar
  79. 79.
    Seo Y et al (2018) Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications. Nanoscale 10(33):15529–15544CrossRefGoogle Scholar
  80. 80.
    Pang WY, Ahmad AL, Zaulkiflee ND (2019) Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. J Environ Manage 249:109358CrossRefGoogle Scholar
  81. 81.
    Pangule RC et al (2010) Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4(7):3993–4000CrossRefGoogle Scholar
  82. 82.
    Qi X et al (2011) Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 3(4):1874–1880CrossRefGoogle Scholar
  83. 83.
    Dong X, McCoy E, Zhang M, Yang L (2014) Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores. J Environ Sci 26(12):2526–2534CrossRefGoogle Scholar
  84. 84.
    Zhou J, Qi X (2011) Multi-walled carbon nanotubes/epilson-polylysine nanocomposite with enhanced antibacterial activity. Lett Appl Microbiol 52(1):76–83CrossRefGoogle Scholar
  85. 85.
    Huang Y-W et al (2017) Versatile polyvinylidene fluoride hybrid ultrafiltration membranes with superior antifouling, antibacterial and self-cleaning properties for water treatment. J Colloid Interface Sci 505:38–48CrossRefGoogle Scholar
  86. 86.
    Alizadeh A, Razmjou A, Ghaedi M, Jannesar R (2019) Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property. Int J Nanomed 14:1669–1685CrossRefGoogle Scholar
  87. 87.
    Weinstein MP et al (1997) The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24(4):584–602CrossRefGoogle Scholar
  88. 88.
    Control ECfDPa (2008) Report on the state of communicable diseases in the EU and EEA/EFTA countriesGoogle Scholar
  89. 89.
    Klevens RM et al (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122(2): 160–166Google Scholar
  90. 90.
    Vagos MR, Moreira JMR, Soares OSGP, Pereira MFR, Mergulhao FJ (2019) Incorporation of Carbon Nanotubes in Polydimethylsiloxane to Control Escherichia coli Adhesion. Polym Compos 40:E1697–E1704CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations