Advertisement

A Thirst for Polymeric Antimicrobial Surfaces/Coatings for Diverse Applications

Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

It is significantly accepted that microorganisms such as bacteria, yeast, fungi, and algae inhabit our world, which dominate us in number and size. We only happen to wander for a certain period of time in their world. In spite of our own cell count, even our own body is outnumbered by 10:1 microbial cells and we are living only because we can accept this fact and seek to coexist [1]. Sometimes, the presence of microorganisms is essential like in the growth factors of insects and animals.

References

  1. 1.
    Abe A, Genzer J, De Jeu WH, Kobayashi S; Leibler L, Long TE, Manners I, Terentjev EM, Vicent M, Voit B, Wegner G, Wiesner U (2011) Bioactive SurfacesGoogle Scholar
  2. 2.
    Nagaraja A, Jalageri MD, Puttaiahgowda YM, Raghava K, Raghu AV (2019) A review on various maleic anhydride antimicrobial polymers. J Microbiol Methods 163(2019):105650.  https://doi.org/10.1016/j.mimet.2019.105650CrossRefGoogle Scholar
  3. 3.
    Xue Y, Xiao H, Zhang Y (2015) Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16(2):3626–3655.  https://doi.org/10.3390/ijms16023626CrossRefGoogle Scholar
  4. 4.
    Nagaraja A, Puttaiahgowda YM, Kulal A, Parambil AM, Varadavenkatesan T (2019) Synthesis, characterization, and fabrication of hydrophilic antimicrobial polymer thin film coatings. Macromol Res. 27(3):301–309.  https://doi.org/10.1007/s13233-019-7040-5CrossRefGoogle Scholar
  5. 5.
    Nagaraja A, Puttaiahgowda YM (2019) Synthesis and fabrication of high-potent antimicrobial polymeric ultrathin coatings. J Appl Polym Sci 136(34), 47893(1–10).  https://doi.org/10.1002/app.47893
  6. 6.
    Jalageri MD, Puttaiahgowda MY, Parambil MA, Kulal A (2019) Design of multifunctionalized piperazine polymer and its activity toward pathogenic microorganisms. J Appl Polym Sci 136(19), 47521.  https://doi.org/10.1002/app.47521
  7. 7.
    Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3(12):1969–1985.  https://doi.org/10.1002/adhm.201400418CrossRefGoogle Scholar
  8. 8.
    Chitanu GC, Zaharia LI, Carpov A (1997) Review: analysis and characterization of maleic copolymers. Int J Polym Anal Charact 4(1):1–20.  https://doi.org/10.1080/10236669708033933CrossRefGoogle Scholar
  9. 9.
    World Health Organization (2014) Antimicrobial resistance: global report on surveillance 2014. World Health Organization, pp 1–257. ISBN 9789241564748Google Scholar
  10. 10.
    WHO (2014) Antimicrobial resistance. Global report on surveillance. Bull World Health Organ 61(3), 383–394  https://doi.org/10.1007/s13312-014-0374-3
  11. 11.
    Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings : Challenges, perspectives, and opportunities. Trends Biotechnol xx, 1–16  https://doi.org/10.1016/j.tibtech.2015.09.002
  12. 12.
    Rosenberg M, Ili K, Kahru A (2019) Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. PeerJ 1–34.  https://doi.org/10.7717/peerj.6315
  13. 13.
    Adlhart C, Gouveia I, Melo LF, Crijns F (208) Surface modifications for antimicrobial effects in the healthcare setting : a critical overview. J Hosp Infect 99:239–249.  https://doi.org/10.1016/j.jhin.2018.01.018
  14. 14.
    Ajithkumar MP, Yashoda MP, Prasannakumar S, Sruth TV (2017) Poly(N-vinyl-2-pyrrolidone-maleic anhydride- styrene) grafted terpolymer: synthesis, characterization, and bactericidal property evaluation against E. Coli and S. Epidermidis. J Macromol Sci Part A Pure Appl Chem 54(7):480–488.  https://doi.org/10.1080/10601325.2017.1320753
  15. 15.
    Tiwari A, Chaturvedi A, Coatings F, States U (2018) Antimicrobial coatings D technology advancement or scientific myth. In: Handbook of Antimicrobial Coatings, pp 1–5Google Scholar
  16. 16.
    Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel) 3(1):340–366.  https://doi.org/10.3390/polym3010340
  17. 17.
    Roosjen A, Van Der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly (ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955.  https://doi.org/10.1021/la048469l
  18. 18.
    Bridges AW (2008) Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2(6):984–994CrossRefGoogle Scholar
  19. 19.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304.  https://doi.org/10.1016/j.tibtech.2013.01.017CrossRefGoogle Scholar
  20. 20.
    Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J (2013) Bacterial Fl agella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci 110(14):1–6.  https://doi.org/10.1073/pnas.1219662110CrossRefGoogle Scholar
  21. 21.
    Variola F, Zalzal SF, Leduc A, Barbeau J, Nanci A (2014) Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int J Nanomed 2319–2325Google Scholar
  22. 22.
    Linnea KISTA, Victor H, Perez-luna GPL (1999) Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65(4):1603–1609CrossRefGoogle Scholar
  23. 23.
    Tiller JC (2008) Coatings for prevention or deactivation of biological contaminants, 2nd edn., vol 1. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Pratt-Terpstra IH, Weerkamp AH, Busscher HJ (1987) Adhesion of oral streptococci from a flowing suspension to uncoated and albumin-coated surfaces. J Gen Microbiol 133:3199–3206Google Scholar
  25. 25.
    Lichter JA, Thompson MT, Delgadillo M, Nishikawa T, Rubner MF, Van Vliet K J (2008) Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromlocules 9:1571–1578.  https://doi.org/10.1021/bm701430yCrossRefGoogle Scholar
  26. 26.
    Tiller JC, Liao C, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98(11):5981–5985.  https://doi.org/10.1073/pnas.111143098CrossRefGoogle Scholar
  27. 27.
    Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23(7):343–348.  https://doi.org/10.1016/j.tibtech.2005.05.004CrossRefGoogle Scholar
  28. 28.
    Green JD, Fulghum T, Nordhaus MA (2011) Review of immobilized antimicrobial agents and methods for testing. Biointerphases 6(4):13–28.  https://doi.org/10.1116/1.3645195CrossRefGoogle Scholar
  29. 29.
    Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly (vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng.  https://doi.org/10.1002/bit.10299
  30. 30.
    Lin J, Qiu S, Lewis K, Klibanov AM (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18:1082–1086.  https://doi.org/10.1021/bp025597wCrossRefGoogle Scholar
  31. 31.
    Haldar J, An D, Alvarez L, Cienfuegos D, Chen J, Klibanov AM (2006) Polymeric coatings that inactivate both influenza. Proc Natl Acad Sci USA 103(47):17667–17671.  https://doi.org/10.1073/pnas.0608803103CrossRefGoogle Scholar
  32. 32.
    Kurt P, Wood L, Ohman DE, Wynne KJ, Commonwealth V, Uni V, Veterans M, Medical A (2007) Highly effective contact antimicrobial surfaces via polymer surface modifiers. Langmuir 23:4719–4723.  https://doi.org/10.1021/la063718m
  33. 33.
    Waschinski BCJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC (2008) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers**. Adv Mater 20(1):104–108.  https://doi.org/10.1002/adma.200701095CrossRefGoogle Scholar
  34. 34.
    Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 14:8670–8673Google Scholar
  35. 35.
    Campoccia D, Montanaro L, Renata C (2013) Biomaterials: a review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554.  https://doi.org/10.1016/j.biomaterials.2013.07.089CrossRefGoogle Scholar
  36. 36.
    Hetrick EM, Schoenfisch MH, Hetrick EM, Hetrick EM (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 780–789.  https://doi.org/10.1039/b515219b
  37. 37.
    Vasilev K, Griesser SS, Griesser HJ (2011) Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process Polym 1010–1023.  https://doi.org/10.1002/ppap.201100097
  38. 38.
    Cloutier M, Tolouei R, Lesage O, Lévesque L, Turgeon S, Tatoulian M, Cloutier M, Lesage O (2014) Deposited via a hybrid plasma process on the long term antibacterial features of silver-doped diamond like carbon coatings deposited via a hybrid plasma process. Biointerphases 029013.  https://doi.org/10.1116/1.4871435
  39. 39.
    Michl TD, Coad BR, Doran M, Osiecki M (2015) With bacteriostatic properties and no cytotoxic side effects 7058–7060.  https://doi.org/10.1039/c5cc01722j
  40. 40.
    Zimmermann R, Pfuch A, Horn K, Heft A, Ro M, Linke R, Schnabelrauch M (2011) An approach to create silver containing antibacterial coatings by use of atmospheric pressure plasma chemical vapour deposition (APCVD) and combustion chemical vapour deposition (ccvd) in an economic way. Plasma Process Polym 8(4):295–304.  https://doi.org/10.1002/ppap.201000113CrossRefGoogle Scholar
  41. 41.
    Processing M, Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) On coating techniques for surface protection: a review. J Manuf Mater Process.  https://doi.org/10.3390/jmmp3010028CrossRefGoogle Scholar
  42. 42.
    Kausar A (2018) Pure and applied chemistry polymer coating technology for high performance applications: fundamentals and advances. J Macromol Sci Part A 1325  https://doi.org/10.1080/10601325.2018.1453266
  43. 43.
    Fan Y, Li X, Yang R (2018) The surface modification methods for constructing polymer-coated stents. Int J Polym Sci 2018:1–8.  https://doi.org/10.1155/2018/3891686CrossRefGoogle Scholar
  44. 44.
    Vasilev K (2019) Nanoengineered antibacterial coatings. Coatings 654(9):1–12.  https://doi.org/10.3390/coatings9100654CrossRefGoogle Scholar
  45. 45.
    Jalageri MD, Yashoda MP, Ajithkumar MP, Varadavenkatesan T (2019) Synthesis and fabrication of highly functionalized Jeffamine antimicrobial polymeric coating. Polym Adv Technol 1–12.  https://doi.org/10.1002/pat.4592
  46. 46.
    Pedro J, Serrano C, García-fern L, Barbeck M, Ghanaati S, Unger R, Kirkpatrick J, Arzt E, Funk L, Tur P (2015) Biomaterials nanostructured medical sutures with antibacterial properties. Biomaterials 52.  https://doi.org/10.1016/j.biomaterials.2015.02.039
  47. 47.
    Duday D, Vreuls C, Moreno M, Frache G, Boscher ND, Zocchi G, Archambeau C, Van De Weerdt C, Martial J, Choquet P (2013) Surface & coatings technology atmospheric pressure plasma modified surfaces for immobilization of antimicrobial nisin peptides. Surf Coat Technol 218:152–161.  https://doi.org/10.1016/j.surfcoat.2012.12.045
  48. 48.
    Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK (2014) Biomaterials synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 35(27):7699–7713.  https://doi.org/10.1016/j.biomaterials.2014.05.074CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Ibrahim M, Kan W, Wu G, Wang C, Zheng Y, Yeung KWK, Chu PK (2014) Acta biomaterialia enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. Acta Biomater 10(1):544–556.  https://doi.org/10.1016/j.actbio.2013.10.012CrossRefGoogle Scholar
  50. 50.
    Sedlarik V (2013) Antimicrobial modifications of polymers. Biodegradation - Life of Science 187–204.  https://doi.org/10.5772/56222
  51. 51.
    Singh A, Tiwari A, Bajpai J, Bajpai AK (2018) 3-polymer-based antimicrobial coatings as potential biomaterials: from action to application. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    An YH, Friedman RJ (1997) Methods laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30:141–152.  https://doi.org/10.1016/S0167-7012(97)00058-4CrossRefGoogle Scholar
  53. 53.
    Rodríguez-hernández J (2017) Polymers against microorganisms. Springer Nature, Madrid, SpainCrossRefGoogle Scholar
  54. 54.
    Wilson JW, Ott CM, Honer Zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, Mcclelland M, Wilson JW, Ott CM, Ho K, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, Mccracken J, Allen P, Hammond T, Vogel J, Nelson R, Pierson DL, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104(41):16299–16304.  https://doi.org/10.1073/pnas.0707155104
  55. 55.
    Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429.  https://doi.org/10.1056/NEJMra035415CrossRefGoogle Scholar
  56. 56.
    Chan JFW, Lau SKP, To KKW, Cheng VCC, Woo PCY, Yuen K (2015) Middle east respiratory syndrome coronavirus: another Zoonotic Betacoronavirus causing SARS-like disease. Clin Microbiol Rev 28(2):465–522.  https://doi.org/10.1128/CMR.00102-14CrossRefGoogle Scholar
  57. 57.
    Chu C, Cheng VCC, Hung IFN, Chan K, Tang BSF, Tsang THF, Chan K, Yuen K (2005) Viral load distribution in sars outbreak. Emerg Infect Dis 11(12):1882–1886.  https://doi.org/10.3201/eid1112.040949CrossRefGoogle Scholar
  58. 58.
    Varesano A, Vineis C, Aluigi A, Rombaldoni F (2011) Antimicrobial polymers for textile products. Sci Against Microb Pathog Commun Curr Res Technol Adv 99–110Google Scholar
  59. 59.
    Shin Y, Yoo DI, Jang J (2001) Molecular weight effect on antimicrobial activity of chitosan treated cotton fabrics. J Appl Polym Sci 80(13):2495–2501.  https://doi.org/10.1002/app.1357CrossRefGoogle Scholar
  60. 60.
    Son Y, Sun G (2003) Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci 90(8):2194–2199.  https://doi.org/10.1002/app.12876CrossRefGoogle Scholar
  61. 61.
    Callewaert C, De Maeseneire E, Kerckhof F, Verliefde A, Van De Wiele T, Boon N (2014) Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80(21):6611–6619.  https://doi.org/10.1128/aem.01422-14
  62. 62.
    Ramya K, Maheshwari V (2015) Antiseptic treatment for human foot wounds using piper betel extract finished bamboo/cotton fabrics. Indian J Fibre Text Res 40(June):213–216Google Scholar
  63. 63.
    Özyildiz F, Karagönlü S, Basal G, Uzel A, Bayraktar O (2013) Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett Appl Microbiol 56(3):168–179.  https://doi.org/10.1111/lam.12028CrossRefGoogle Scholar
  64. 64.
    Krishnaveni V, Aparna B (2014) Microencapsulation of copper enriched aloe gel curative garment for atopic dermatitis. Indian J Fibre Text Res 13(October):795–803Google Scholar
  65. 65.
    Sundrarajan M, Rukmani A (2013) Durable antibacterial finishing on cotton by impregnation of limonene microcapsules. Adv Chem Lett 1(1):40–43.  https://doi.org/10.1166/acl.2013.1003CrossRefGoogle Scholar
  66. 66.
    Thilagavathi G, Bala SK (2007) Microencapsulation of herbal extracts for microbial resistance in healthcare textiles. Indian J Fibre Text Res 32(September):351–354Google Scholar
  67. 67.
    Saraswathi R, Krishnan PN, Dilip C (2010) Antimicrobial activity of cotton and silk fabric with herbal extract by micro encapsulation. Asian Pac J Trop Med 3(2):128–132.  https://doi.org/10.1016/S1995-7645(10)60051-XCrossRefGoogle Scholar
  68. 68.
    Panisello C, Peña B, Gilabert Oriol G, Constantí M, Gumí T, Garcia-Valls R (2013) Polysulfone/vanillin microcapsules for antibacterial and aromatic finishing of fabrics. Ind Eng Chem Res 52(29):9995–10003.  https://doi.org/10.1021/ie3036096CrossRefGoogle Scholar
  69. 69.
    Golja B, Šumiga B, Forte Tavčer P (2013) Fragrant finishing of cotton with microcapsules: comparison between printing and impregnation. Color Technol 5(129):338–346.  https://doi.org/10.1111/cote.12044CrossRefGoogle Scholar
  70. 70.
    Boh B, Knez E (2006) Microencapsulation of essential oils and phase change materials for applications in textile products. Indian J Fibre Text Res 1(31):72–82Google Scholar
  71. 71.
    Thilagavathi G, Rajendrakumar K, Rajendran R (2005) Development of ecofriendly antimicrobial textile finishes using herbs. Indian J Fibre Text Res 30(4):431–436Google Scholar
  72. 72.
    Ren X, Kocer HB, Worley SD, Broughton RM, Huang TS (2009) Rechargeable biocidal cellulose: synthesis and application of 3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione. Carbohydr Polym 75(4):683–687.  https://doi.org/10.1016/j.carbpol.2008.09.012CrossRefGoogle Scholar
  73. 73.
    Ren X, Kou L, Liang J, Worley SD, Tzou YM, Huang TS (2008) Antimicrobial efficacy and light stability of n-halamine siloxanes bound to cotton. Cellulose 15(4):593–598.  https://doi.org/10.1007/s10570-008-9205-9CrossRefGoogle Scholar
  74. 74.
    Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667.  https://doi.org/10.1002/appCrossRefGoogle Scholar
  75. 75.
    Barnes K, Liang J, Wu R, Worley SD, Lee J, Broughton RM, Huang TS (2006) Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin]. Biomaterials 27(27):4825–4830.  https://doi.org/10.1016/j.biomaterials.2006.05.023CrossRefGoogle Scholar
  76. 76.
    Ren X, Kou L, Kocer HB, Zhu C, Worley SD, Broughton RM, Huang TS (2008) Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization. Colloids Surf A 317:711–716.  https://doi.org/10.1016/j.colsurfa.2007.12.007
  77. 77.
    Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang T (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501.  https://doi.org/10.1016/j.biomaterials.2005.11.020CrossRefGoogle Scholar
  78. 78.
    Yu M, Gu G, Meng WD, Qing FL (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673.  https://doi.org/10.1016/j.apsusc.2006.07.086CrossRefGoogle Scholar
  79. 79.
    Marini M, Bondi M, Iseppi R, Toselli M, Pilati F (2007) Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol–gel process. Eur Polym J 43:3621–3628.  https://doi.org/10.1016/j.eurpolymj.2007.06.002CrossRefGoogle Scholar
  80. 80.
    Yao C, Li X, Neoh KG, Shi Z, Kang ET (2008) Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. J Memb Sci 320:259–267.  https://doi.org/10.1016/j.memsci.2008.04.012CrossRefGoogle Scholar
  81. 81.
    Shao H, Jiang L, Meng WD, Qing FL (2003) Synthesis and antimicrobial activity of a perfluoroalkyl-containing quaternary ammonium salt. J Fluor Chem 124(1):89–91.  https://doi.org/10.1016/S0022-1139(03)00193-3CrossRefGoogle Scholar
  82. 82.
    Kumar V, Bhardwaj YKÃ, Rawat KP, Sabharwal S (2005) Radiation-induced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities. Radiat Phys Chem 73:175–182.  https://doi.org/10.1016/j.radphyschem.2004.08.011CrossRefGoogle Scholar
  83. 83.
    Allmyr M, Adolfsson-erici M, Mclachlan MS, Sandborgh-englund G (2006) Triclosan in plasma and milk from swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93.  https://doi.org/10.1016/j.scitotenv.2006.08.007CrossRefGoogle Scholar
  84. 84.
    Chen-Yu JH, Eberhardt DM, Kincade DH (2007) Antibacterial and laundering properties of AMS and PHMB as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J 25(3):258–272.  https://doi.org/10.1177/0887302X07303625CrossRefGoogle Scholar
  85. 85.
    Blackburn RS, Harvey A, Kettle LL, Manian AP, Payne JD, Russell SJ (2007) Sorption of chlorhexidine on cellulose: mechanism of binding and molecular recognition. J Phys Chem B 111:8775–8784.  https://doi.org/10.1021/jp070856r
  86. 86.
    Kawabata A, Taylor JA (2004) Effect of reactive dyes upon the uptake and antibacterial action of poly(hexamethylene biguanide) on cotton. Part 1: Effect of bis(monochlorotriazinyl) dyes. Color Technol 120(5):213–219.  https://doi.org/10.1111/j.1478-4408.2004.tb00120.x
  87. 87.
    Krebs FC, Miller SR, Lee M, Labib M, Rando RF, Wigdahl B (2005) Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed Pharmacother 59:438–445.  https://doi.org/10.1016/j.biopha.2005.07.007CrossRefGoogle Scholar
  88. 88.
    Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M (2011) A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res J 81(10):1081–1088.  https://doi.org/10.1177/0040517510397577
  89. 89.
    Fisher L, Ostovapour S, Kelly P, Whitehead KA, Cooke K, Storgårds E, Verran J (2014) Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity. Biofouling 30(8):911–919.  https://doi.org/10.1080/08927014.2014.939959CrossRefGoogle Scholar
  90. 90.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83.  https://doi.org/10.1016/j.biotechadv.2008.09.002CrossRefGoogle Scholar
  91. 91.
    Roberson M, Rangari V, Jeelani S, Samuel T, Yates C (2014) Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications. Nano Life 04(01):1440003.  https://doi.org/10.1142/s1793984414400030CrossRefGoogle Scholar
  92. 92.
    Romero L, Piccirillo C, Castro PML, Bowman C, Warwick MEA, Binions R (2015) Titanium dioxide thin films deposited by electric field-assisted CVD: effect on antimicrobial and photocatalytic properties. Chem Vap Depos 21(1–3):63–70.  https://doi.org/10.1002/cvde.201407145CrossRefGoogle Scholar
  93. 93.
    Swathy JR, Udhaya Sankar M, Chaudhary A, Aigal S, Anshup, Pradeep T (2014) Antimicrobial silver: an unprecedented anion effect. Sci Rep 11.  https://doi.org/10.1038/srep07161
  94. 94.
    Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782.  https://doi.org/10.1016/j.progpolymsci.2011.02.003CrossRefGoogle Scholar
  95. 95.
    Huang T, Qian Y, Wei J, Zhou C (2019) Polymeric antimicrobial food packaging and its applications. Polymers (Basel) 11(3).  https://doi.org/10.3390/polym11030560
  96. 96.
    Caner C, Vergano PJ, Wiles JL (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63(6):1049–1053.  https://doi.org/10.1111/j.1365-2621.1998.tb15852.xCrossRefGoogle Scholar
  97. 97.
    Solano ACV, de Gante CR (2012) Two different processes to obtain antimicrobial packaging containing natural oils. Food Bioprocess Technol 5(6):2522–2528.  https://doi.org/10.1007/s11947-011-0626-3CrossRefGoogle Scholar
  98. 98.
    Rodríguez A, Nerín C, Batlle R (2008) New cinnamon-based active paper packaging against rhizopusstolonifer food spoilage. J Agric Food Chem 56(15):6364–6369.  https://doi.org/10.1021/jf800699qCrossRefGoogle Scholar
  99. 99.
    Meira SMM, Zehetmeyer G, Werner JO, Brandelli A (2017) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll 63:561–570.  https://doi.org/10.1016/j.foodhyd.2016.10.013CrossRefGoogle Scholar
  100. 100.
    La Storia A, Ercolini D, Marinello F, Mauriello G (2008) Characterization of bacteriocin-coated antimicrobial polyethylene films by atomic force microscopy. J Food Sci 73(4):48–54.  https://doi.org/10.1111/j.1750-3841.2008.00713.xCrossRefGoogle Scholar
  101. 101.
    Zhang M, Gao X, Zhang H, Liu H, Jin J, Yang W, Xie Y (2017) Development and antilisterial activity of PE-based biological preservative films incorporating plantaricin BM-1. FEMS Microbiol Lett 364(7).  https://doi.org/10.1093/femsle/fnw283
  102. 102.
    Mondal D, Bhowmick B, Maity D, Mollick MR, Rana D, Rangarajan V, Sen R (2015) Investigation on sodium benzoate release from poly (butylene adipate-co-terephthalate)/ organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity. J Food Sci 80(3).  https://doi.org/10.1111/1750-3841.12745
  103. 103.
    Cestari LA, Gaiotto RC, Antigo JL, Scapim MRS, Madrona GS, Yamashita F, Pozza MSS, Prado IN (2015) Effect of active packaging on low-sodium restructured chicken steaks. J Food Sci Technol 52(6):3376–3382.  https://doi.org/10.1007/s13197-014-1357-zCrossRefGoogle Scholar
  104. 104.
    Sangsuwan J, Rattanapanone N, Pongsirikul I (2015) Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake. Int J Food Sci Technol 50(2):323–330.  https://doi.org/10.1111/ijfs.12631CrossRefGoogle Scholar
  105. 105.
    Uranga J, Puertas AI, Etxabide A, Dueñas MT, Guerrero P, de la Caba K (2019) Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocoll 86:95–103.  https://doi.org/10.1016/j.foodhyd.2018.02.018CrossRefGoogle Scholar
  106. 106.
    Liu J, Liu S, Zhang X, Kan J, Jin C (2018) Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (agaricus bisporus). Postharvest Biol Technol 2019(147):39–47.  https://doi.org/10.1016/j.postharvbio.2018.09.004CrossRefGoogle Scholar
  107. 107.
    Kumar D, Kumar P, Pandey J (2018) Binary grafted chitosan film: synthesis, characterization, antibacterial activity and prospects for food packaging. Int J Biol Macromol 115(2017):341–348.  https://doi.org/10.1016/j.ijbiomac.2018.04.084CrossRefGoogle Scholar
  108. 108.
    Kanmani P, Rhim JW (2014) Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. Int J Biol Macromol 68:258–266.  https://doi.org/10.1016/j.ijbiomac.2014.05.011CrossRefGoogle Scholar
  109. 109.
    Vendra VK, Wu L, Krishnan S (2011) Polymer thin films for biomedical applications. In: Nanotechnologies for the life sciences, vol. 5. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–54Google Scholar
  110. 110.
    Xu X, Chen X, Jing X (2006) Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087.  https://doi.org/10.1016/j.eurpolymj.2006.03.032CrossRefGoogle Scholar
  111. 111.
    Woo GLY, Mittelman MW, Santerre JP (2000) Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 21:1235–1246.  https://doi.org/10.1016/S0142-9612(00)00003-XCrossRefGoogle Scholar
  112. 112.
    Zhang W, Ji J, Zhang Y, Yan Q, Kurmaev EZ (2007) Effects of NH3, O2, and N2 co-implantation on cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl Surf Sci 253:8981–8985.  https://doi.org/10.1016/j.apsusc.2007.05.019CrossRefGoogle Scholar
  113. 113.
    Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Subhash Mahajan A, Veyssière P (2008) Encyclopedia of materials: science and technologyGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia

Personalised recommendations