The Need for Engineering Antimicrobial Surfaces

Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


The increasing incidences of life-threatening infectious diseases call for the development of antimicrobial materials and coating in every area of life. This chapters discusses the current scenario of infectious bacteria, their resistance to multiple drugs, and a serious lack of development of new antibiotics. The various techniques to produce effective antimicrobials and the need for multitargeted activity of antimicrobials is also discussed. Furthermore, it is suggested that the use of surface engineering and nanomaterials can significantly improve the chances of combating multiple drug-resistant strains of bacteria.


Antibiotic resistance Nanomaterials Engineered antimicrobials Hybrid antimicrobials Multidrug resistant 



The authors are grateful to the facilities provided by the International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, School of Pure and Applied Physics, and School of Biosciences, Mahatma Gandhi University.


  1. 1.
    WHO (2018) Deaths by cause, age, sex, by country and by region. Available via World Health Organisation.
  2. 2.
    French G (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36:S3–S7CrossRefGoogle Scholar
  3. 3.
    WHO (2017) World Health Organization (WHO) publishes list of bacteria for which new antibiotics are urgently needed (2017)Google Scholar
  4. 4.
    Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRefGoogle Scholar
  5. 5.
    Thomas JG, Litton I, Rinde H (2005) Economic impact of biofilms on treatment costs. In: Biofilms, infection, and antimicrobial therapy. CRC Press, pp 39–56Google Scholar
  6. 6.
    Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI (2016) Intrigues of biofilm: a perspective in veterinary medicine. Vet World 9(1):12Google Scholar
  7. 7.
    Bowler PG (2018) Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J Wound Care 27(5):273–277CrossRefGoogle Scholar
  8. 8.
    Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu Y-W, Tang Z, Xu F-J (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromol 19(7):2805–2811CrossRefGoogle Scholar
  9. 9.
    Rauner N, Mueller C, Ring S, Boehle S, Strassburg A, Schoeneweiss C, Wasner M, Tiller JC (2018) A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv Func Mater 28(29):1801248CrossRefGoogle Scholar
  10. 10.
    Van Loosdrecht M, Lyklema J, Norde W, Schraa G, Zehnder A (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897CrossRefGoogle Scholar
  11. 11.
    Van der Westen R, Sjollema J, Molenaar R, Sharma PK, Van der Mei HC, Busscher HJ (2018) Floating and tether-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces. Langmuir 34(17):4937–4944CrossRefGoogle Scholar
  12. 12.
    Schubert A, Wassmann T, Holtappels M, Kurbad O, Krohn S, Bürgers R (2019) Predictability of microbial adhesion to dental materials by roughness parameters. Coatings 9(7):456CrossRefGoogle Scholar
  13. 13.
    Andreotti AM, De Sousa CA, Goiato MC, da Silva EVF, Duque C, Moreno A, Dos Santos DM (2018) In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. Eur J Dent 12(2):176CrossRefGoogle Scholar
  14. 14.
    Idumah CI, Hassan A, Ihuoma DE (2019) Recently emerging trends in polymer nanocomposites packaging materials. Polymer-Plast Technol Mater 58(10):1054–1109CrossRefGoogle Scholar
  15. 15.
    Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46(1):90–97CrossRefGoogle Scholar
  16. 16.
    Yuan H, Zhang X, Jiang Z, Chen X, Zhang X (2018) Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir 35(9):3524–3533CrossRefGoogle Scholar
  17. 17.
    Mello TP, Oliveira SS, Frasés S, Branquinha MH, Santos AL (2018) Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling 34(7):800–814Google Scholar
  18. 18.
    Zou S, Wei Z, Hu Y, Deng Y, Tong Z, Wang C (2014) Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polym Chem 5(14):4227–4234CrossRefGoogle Scholar
  19. 19.
    Shirbin SJ, Lam SJ, Chan NJ-A, Ozmen MM, Fu Q, O’Brien-Simpson N, Reynolds EC, Qiao GG (2016) Polypeptide-based macroporous cryogels with inherent antimicrobial properties: the importance of a macroporous structure. ACS Macro Lett 5(5):552–557CrossRefGoogle Scholar
  20. 20.
    Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289(1–2):199–209CrossRefGoogle Scholar
  21. 21.
    Hill BR, Watson Sr TF, Triplett BL (1991) Antimicrobial microporous coating. Google PatentsGoogle Scholar
  22. 22.
    Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116(5):3207–3211CrossRefGoogle Scholar
  23. 23.
    Díaz C, Schilardi P, Salvarezza R, Lorenzo Fernández, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23(22):11206–11210CrossRefGoogle Scholar
  24. 24.
    Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30(31):9466–9476Google Scholar
  25. 25.
    Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7(1):55–71CrossRefGoogle Scholar
  26. 26.
    Atefyekta S, Ercan B, Karlsson J, Taylor E, Chung S, Webster TJ, Andersson M (2016) Antimicrobial performance of Mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomed 11:977Google Scholar
  27. 27.
    Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028CrossRefGoogle Scholar
  28. 28.
    Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54CrossRefGoogle Scholar
  29. 29.
    Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304CrossRefGoogle Scholar
  30. 30.
    Ping X, Wang M, Xuewu G (2011) Surface modification of poly (ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly (acrylic acid) and its application in antibacterial hybrid film. Radiat Phys Chem 80(4):567–572CrossRefGoogle Scholar
  31. 31.
    Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Biores Technol 88(3):179–184CrossRefGoogle Scholar
  32. 32.
    Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567CrossRefGoogle Scholar
  33. 33.
    Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019CrossRefGoogle Scholar
  34. 34.
    Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W (2010) Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int J Food Sci Technol 45(4):676–682CrossRefGoogle Scholar
  35. 35.
    Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem 55(14):5484–5490CrossRefGoogle Scholar
  36. 36.
    Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287CrossRefGoogle Scholar
  37. 37.
    Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57(23):10144–10161CrossRefGoogle Scholar
  38. 38.
    Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI (2017) Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 8(5):e01172–e01117CrossRefGoogle Scholar
  39. 39.
    de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV (2014) Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol 14(1):118CrossRefGoogle Scholar
  40. 40.
    Bogdanos DP, Sakkas LI (2019) Infections: viruses and bacteria. In: Mosaic of autoimmunity. Elsevier, pp 203–213Google Scholar
  41. 41.
    Bolduc J, Nagel C, Li J, Hanson C, Fernholz P (2019) Performic acid biofilm prevention for industrial CO2 scrubbers. Google PatentsGoogle Scholar
  42. 42.
    Gustavsson R, Mandenius C-F, Löfgren S, Scheper T, Lindner P (2019) In situ microscopy as online tool for detecting microbial contaminations in cell culture. J Biotechnol 296:53–60CrossRefGoogle Scholar
  43. 43.
    White BP, Patel S, Tsui J, Chastain DB (2019) Adding double carbapenem therapy to the armamentarium against carbapenem-resistant Enterobacteriaceae bloodstream infections. Infect Dis 51(3):161–167CrossRefGoogle Scholar
  44. 44.
    Baker S, Perianova OV (2019) Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN Appl Sci 1(7):699CrossRefGoogle Scholar
  45. 45.
    Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W (2019) Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 11(5):236CrossRefGoogle Scholar
  46. 46.
    Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10Google Scholar
  47. 47.
    Post S, Shapiro J, Wuest W (2019) Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemCommGoogle Scholar
  48. 48.
    Zhen X, Lundborg CS, Sun X, Hu X, Dong H (2019) Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 8(1):1–23CrossRefGoogle Scholar
  49. 49.
    Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res IntGoogle Scholar
  50. 50.
    Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, Liu J (2016) Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. J Mater Chem B 4(37):6258–6270CrossRefGoogle Scholar
  51. 51.
    Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal C (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355CrossRefGoogle Scholar
  52. 52.
    Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Di Pietro L, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA)-Biomembranes 1860(11):2428–2435Google Scholar
  53. 53.
    Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C (2019) Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 192:551–559CrossRefGoogle Scholar
  54. 54.
    Tattevin P, Flécher E, Auffret V, Leclercq C, Boulé S, Vincentelli A, Dambrin C, Delmas C, Barandon L, Veniard V (2019) Risk factors and prognostic impact of left ventricular assist device-associated infections. Am Heart J 214:69–76CrossRefGoogle Scholar
  55. 55.
    Chen J, Howell C, Haller CA, Patel MS, Ayala P, Moravec KA, Dai E, Liu L, Sotiri I, Aizenberg M (2017) An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials 113:80–92CrossRefGoogle Scholar
  56. 56.
    Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29CrossRefGoogle Scholar
  57. 57.
    Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277Google Scholar
  58. 58.
    Costa-Gouveia J, Ainsa JA, Brodin P, Lucia A (2017) How can nanoparticles contribute to antituberculosis therapy? Drug Discov Today 22(3):600–607CrossRefGoogle Scholar
  59. 59.
    Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA (2017) Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm 532(1):139–148CrossRefGoogle Scholar
  60. 60.
    Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B 146:70–83CrossRefGoogle Scholar
  61. 61.
    Parham S, Wicaksono DH, Bagherbaigi S, Lee SL, Nur H (2016) Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chin Chem Soc 63(4):385–393CrossRefGoogle Scholar
  62. 62.
    Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128CrossRefGoogle Scholar
  63. 63.
    Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910CrossRefGoogle Scholar
  64. 64.
    Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRefGoogle Scholar
  65. 65.
    Li S, Wang E, Tian C, Mao B, Kang Z, Li Q, Sun G (2008) Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. J Solid State Chem 181(7):1650–1658CrossRefGoogle Scholar
  66. 66.
    Tung LM, Cong NX, Huy LT, Lan NT, Phan VN, Hoa NQ, Vinh LK, Thinh NV, Tai LT, Mølhave K (2016) Synthesis, characterizations of superparamagnetic Fe3O4–Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J Nanosci Nanotechnol 16(6):5902–5912CrossRefGoogle Scholar
  67. 67.
    Zaharia A, Muşat V, Ghisman VP, Baroiu N (2016) Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag) ZnO/chitosan composite nanoparticles. Eur Polymer J 84:550–564CrossRefGoogle Scholar
  68. 68.
    Rezić I, Haramina T, Rezić T (2017) Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Food packaging. Elsevier, pp 497–532Google Scholar
  69. 69.
    Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617CrossRefGoogle Scholar
  70. 70.
    Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19Google Scholar
  71. 71.
    Moorcroft SC, Jayne DG, Evans SD, Ong ZY (2018) Stimuli-responsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems. Macromol Biosci 18(12):1800207CrossRefGoogle Scholar
  72. 72.
    Zheng K, Setyawati MI, Lim T-P, Leong DT, Xie J (2016) Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 10(8):7934–7942CrossRefGoogle Scholar
  73. 73.
    Snigdha S, Rahul M, Kalarikkal N, Thomas S, Radhakrishnan E (2019) Poly (ε-caprolactone) microsphere decorated with Nano-ZnO based phytoformulation: a promising antimicrobial agent. J Inorg Organomet Polymers Mater 1–11Google Scholar
  74. 74.
    Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I (2017) Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol 102:60–66CrossRefGoogle Scholar
  75. 75.
    Senthilkumar R, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B (2017) Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int J Biol Macromol 104:1746–1752CrossRefGoogle Scholar
  76. 76.
    Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9(2):1600–1612CrossRefGoogle Scholar
  77. 77.
    Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R (2019) Antimicrobial applications of clay nanotube-based composites. Nanomaterials 9(5):708CrossRefGoogle Scholar
  78. 78.
    Reddy AB, Manjula B, Jayaramudu T, Sadiku E, Babu PA, Selvam SP (2016) 5-Fluorouracil loaded chitosan–PVA/Na+ MMT nanocomposite films for drug release and antimicrobial activity. Nano-micro Lett 8(3):260–269CrossRefGoogle Scholar
  79. 79.
    Rapacz-Kmita A, Bućko M, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478CrossRefGoogle Scholar
  80. 80.
    Zhang L, Chen J, Yu W, Zhao Q, Liu J (2018) Antimicrobial nanocomposites prepared from montmorillonite/Ag. J NanomatGoogle Scholar
  81. 81.
    Pielichowski K (2016) Modern polymeric materials for environmental applicationsGoogle Scholar
  82. 82.
    Al-Samhan M, Samuel J, Al-Attar F, Abraham G (2017) Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int J Polymer SciGoogle Scholar
  83. 83.
    Edraki M, Zaarei D (2018) Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J Green Chem 2(3):171–280, 189–200Google Scholar
  84. 84.
    Hu C-H, Xia M-S (2006) Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci 31(3–4):180–184CrossRefGoogle Scholar
  85. 85.
    Yan Y, Li C, Wu H, Du J, Feng J, Zhang J, Huang L, Tan S, Shi Q-S (2019) Montmorillonite-modified reduced graphene oxide stabilizes copper nanoparticles and enhances bacterial adsorption and antibacterial activity. ACS Appl Bio MaterGoogle Scholar
  86. 86.
    Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682CrossRefGoogle Scholar
  87. 87.
    Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512CrossRefGoogle Scholar
  88. 88.
    Nigmatullin R, Gao F, Konovalova V (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43(17):5728–5733CrossRefGoogle Scholar
  89. 89.
    Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116CrossRefGoogle Scholar
  90. 90.
    Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad 51(4):277–282CrossRefGoogle Scholar
  91. 91.
    Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res Part A: Off J Soc Biomaterials, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 88(2):448–453CrossRefGoogle Scholar
  92. 92.
    Abdollahi M, Damirchi S, Shafafi M, Rezaei M, Ariaii P (2019) Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int J Biol Macromol 126:561–568CrossRefGoogle Scholar
  93. 93.
    Joo SH, Aggarwal S (2018) Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. J Environ Manage 225:62–74CrossRefGoogle Scholar
  94. 94.
    Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.International and Inter University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia
  2. 2.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  3. 3.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia
  4. 4.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations