Skip to main content

Investigating Different Sources of Flexibility in Power System

  • Chapter
  • First Online:
Demand-side Flexibility in Smart Grid

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Increasing the integration of variable renewable energy sources to power systems has a negative effect on the reliable operation of the grid. To overcome this challenge, increasing flexibility is known to be the main key. This chapter aims to provide a comprehensive analysis of different sources of flexibility in power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecofys, Flexibility Options in Electricity Systems, 2014 (2014). [Online]. Available: http://www.ecofys.com/files/files/ecofys-eci-2014-flexibility-options-in-elecelectricity-systems.pdf. Accessed 2019

  2. G. Papaefthymiou, K. Grave, K. Dragoon, Flexibility options in electricity systems. Ecofys (2014)

    Google Scholar 

  3. N. Shabbir, R. Ahmadiahangar, L. Kütt, A. Rosin, Comparison of machine learning based methods for residential load forecasting, in Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (2019)

    Google Scholar 

  4. M. Mahmudizad, R. Ahmadiahangar, Improving load frequency control of multi-area power system by considering uncertainty by using optimized type 2 fuzzy pid controller with the harmony search algorithm. World Acad. Sci. Eng. Technol. Int. J Electr. Comput. Energ. Electron. Commun. Eng. 10(8), 1051–1061 (2016)

    Google Scholar 

  5. R. Ahmadiahangar, F. Ghardashi, D. Kabiri, A. Sheykholeslami, H. Haeri, Voltage and frequency control in smart distribution systems in presence of DER using flywheel energy storage system, in 22nd International Conference and Exhibition on Electricity Distribution, CIRED (Stockholm, Sweden, 2013)

    Google Scholar 

  6. R. Ahmadi, A. Sheikholeslami, A.N. Niaki, A. Ranjbar, Dynamic participation of doubly fed induction generators in multi-control area load frequency control. Int. Trans. Electr. Energy Syst. 25(7), 1130–1147 (2015)

    Google Scholar 

  7. R. AhmadiAhangar, A. Rosin, A.N. Niaki, I. Palu, T. Korõtko, A review on real-time simulation and analysis methods of microgrids. Int. Trans Electr. Energy Syst. 29(11), e12106 (2019)

    Google Scholar 

  8. H. Karimi-Davijani, A. Sheikholeslami, R. Ahmadi, H. Livani, Active and reactive power control of DFIG using SVPWM converter, in 43rd International Universities Power Engineering Conference, UPEC, Padova, Italy (2008)

    Google Scholar 

  9. M.B. Anwar, M.S.E. Moursi, W. Xiao, Dispatching and frequency control strategies for marine current turbines based on doubly fed induction generator. IEEE Trans. Sustain. Energy 7, 262–270 (2016)

    Article  Google Scholar 

  10. Y. Wang, V. Silva, M. Lopez-Botet-Zulueta, Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system. IET Renew. Power Gener. 10(1), 10–16 (2016)

    Article  Google Scholar 

  11. E. Hillberg, A. Zegers, B. Herndler, S. Wong, J. Pompee, Power Transmission & Distribution Systems; Flexibility needs in the future power system, ISGAN Annex 6 Power T&D Systems (2019)

    Google Scholar 

  12. P. Kadar, ZigBee controls the household appliances, in International Conference on Intelligent Engineering Systems, INES, pp. 189–192 (2009)

    Google Scholar 

  13. R. Ahmadiahangar, T. Häring, A. Rosin, T. Korõtko, J. Martins, Residential load forecasting for flexibility prediction using machine learning-based regression model, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (2019)

    Google Scholar 

  14. T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, Impact of load matching algorithms on the battery capacity with different household occupancies, in IECON 2019–45th Annual Conference of the IEEE Industrial Electronics Society (Lisbon, 2019)

    Google Scholar 

  15. A. Rosin, H. Hõimoja, T. Möller, M. Lehtla, Residential electricity consumption and loads pattern analysis, in Proceedings of the 2010 Electric Power Quality and Supply Reliability Conference (Kuressaare, 2010)

    Google Scholar 

  16. I. Drovtar, J. Niitsoo, A. Rosin, J. Kilter, I. Palu, Electricity consumption analysis and power quality monitoring in commercial buildings, in 2012 Electric Power Quality and Supply Reliability (Tartu, 2012)

    Google Scholar 

  17. A. Rosin, A. Auvaart, D. Lebedev, Analysis of operation times and electrical storage dimensioning for energy consumption shifting and balancing in residential areas. Elektronika Ir Elektrotechnika 120(4), 15–20 (2012). https://doi.org/10.5755/j01.eee.120.4

    Article  Google Scholar 

  18. X. Yan, Y. Ozturk, H. Zechun, Y. Song, A review on price-driven residential demand response. Renew. Sustain. Energy Rev. 96, 411–419 (2018)

    Article  Google Scholar 

  19. V.M. Lopez-Martin, F.J. Azcondo, A. Pigazo, Power quality enhancement in residential smart grids through power factor correction stages. IEEE Trans. Industr. Electron. 65(11), 8553–8564 (2018)

    Article  Google Scholar 

  20. A. Abessi, V. Vahidinasab, M.S. Ghazizadeh, Centralized support distributed voltage control by using end-users as reactive power support. IEEE Trans. Smart Grid 7(1), 178–188 (2016)

    Article  Google Scholar 

  21. X. Jina, K. Bakera, D. Christensen, S. Isley, Foresee: a user-centric home energy management system for energy efficiency and demand response. Appl. Energy 205, 1583–1595 (2017)

    Article  Google Scholar 

  22. A. Khan, N. Javaid, M.I. Khan, Time and device based priority induced comfort management in smart home within the consumer budget limitation. Sustain. Cities Soc. 41, 538–555 (2018)

    Article  Google Scholar 

  23. R. Kadavil, S. Lurb, S. Suryanarayanan, P.A. Aloise-Young, S. Isley, D. Christensen, An application of the analytic hierarchy process for prioritizing user preferences in the design of a home energy management system. Sustain. Energy Grids Netw. 16, 196–206 (2018)

    Article  Google Scholar 

  24. X. Wu, X. Hu, X. Yin, S.J. Moura, Stochastic optimal energy management of smart home with PEV energy storage. IEEE Trans. Smart Grid 9(3), 2065–2071 (2018)

    Article  Google Scholar 

  25. N.U. Hassan, Y.I. Khalid, C. Yuen, W. Tushar, Customer engagement plans for peak load reduction in residential smart grids. IEEE Trans. Smart Grid 6(6), 3029–33041 (2015)

    Article  Google Scholar 

  26. M. Beaudin, H. Zareipour, Home energy management systems: a review of modelling and complexity. Renew. Sustain. Energy Rev. 45, 318–335 (2015)

    Article  Google Scholar 

  27. C. Fan, G. Huang, Y. Sun, A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level. Energy 164, 536–549 (2018)

    Article  Google Scholar 

  28. Y. Tang, Q. Chen, J. Ning, Q. Wang, S. Feng, Y. Li, Hierarchical control strategy for residential demand response considering time-varying aggregated capacity. Electr. Power Energy Syst. 97, 165–173 (2018)

    Article  Google Scholar 

  29. S. Shafiee, M. Fotuhi-Firuzabad, M. Rastegar, Investigating the impacts of plug-in hybrid electric vehicles on power distribution systems. IEEE Trans. Smart Grid 4(3), 1351–1360 (2013)

    Article  Google Scholar 

  30. N. Shabbir, R. Ahmadiahangar, L. Kütt, M.N. Iqbal, A. Rosin, Forecasting short term wind energy generation using machine learning, in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), pp. 1–4 (IEEE, 2019)

    Google Scholar 

  31. T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, T. Korõtko, Comparison of the impact of different household occupancies on load matching algorithms, in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), pp. 1–6 (IEEE, 2019)

    Google Scholar 

  32. A.B. Dayani, H. Fazlollahtabar, R. Ahmadiahangar, A. Rosin, M.S. Naderi, M. Bagheri, Applying reinforcement learning method for real-time energy management, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–5 (IEEE, 2019)

    Google Scholar 

  33. S. Attiaa, P. Eleftherioub, F. Xenib, R. Morlotc, C. Ménézod, V.M. Kostopoulose, M. Betsie, Overview and future challenges of nearly zero energy buildings(nZEB) design in Southern Europe. Energy Build. 155, 439–458 (2017)

    Article  Google Scholar 

  34. H. Shareef, M.S. Ahmed, Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. Special Section on Energy Management in Buildings. https://doi.org/10.1109/access.2018.2831917 (2018)

  35. Y.-H. Lin, M.-S. Tsai, An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling. IEEE Trans. Smart Grid 6(4), 1839–1853 (2015)

    Article  Google Scholar 

  36. Y. Chen, P. Xu, J. Gu, F. Schmidt, W. Li, Measures to improve energy demand flexibility in buildings for demand response (DR): a review. Energy Build. 177, 125–139 (2018)

    Article  Google Scholar 

  37. R.G. Junker, A.G. Azar, R.A. Lopes, K.B. Lindberg, G. Reynders, R. Relan, H. Madsen, Characterizing the energy flexibility of buildings and districts. Appl. Energy 225, 175–182 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the European Commission through the H2020 project Finest Twins (grant No. 856602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Azizi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmadiahangar, R., Rosin, A., Palu, I., Azizi, A. (2020). Investigating Different Sources of Flexibility in Power System. In: Demand-side Flexibility in Smart Grid. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4627-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4627-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4626-6

  • Online ISBN: 978-981-15-4627-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics