Skip to main content

Designing of the PID and PIλ Dμ Controller for DC Motor

  • 489 Accesses

Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

In this paper, a novel approach has been proposed for consistent controller design. Engineers and scientists are often challenged with the design, analysis, and synthesis of actual problems. The development of a ‘mathematical model’ can be a feasible substitute for the actual problem. Here the construction of a mathematical model is from a process or plant. If the plant and the controller are described by a set of fractional differential equations then the fractional derivative and integral provide a wide range of applications for such dynamical systems. Here the stability of a DC motor is checked at a different level and it is found that, the existence of a large stability region in the complex plane with fractional-order system. Additional reliability and flexibility are obtained for system implementation in the control engineering with the large stability region. Instead of an analytically or experimentally approaches if a fractional-order controller design approach is used for a given process then the measured parameter gives the better result.

Keywords

  • DC motor
  • Fractional-order system
  • Fractional-order calculus
  • Stability
  • MATLAB
  • Function under class
  • Ziegler–Nichols method

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-4619-8_46
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-4619-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 46.1
Fig. 46.2
Fig. 46.3
Fig. 46.4
Fig. 46.5
Fig. 46.6
Fig. 46.7
Fig. 46.8
Fig. 46.9
Fig. 46.10
Fig. 46.11
Fig. 46.12
Fig. 46.13

Abbreviations

PID:

Proportional integral derivative

LTI:

Linear time invariant

\(G{\text{cl}}_{\text{ZN}}\) :

Close-loop response of Ziegler–Nichols method

\(G_{\text{Plant}}\) :

Plant transfer function

\(G_{{R1{\text{cl}}}} (s)\) :

Close-loop transfer function of plant

References

  1. Gutman, P., Mannerfelt, C., Molander, P.: Contributions to the model reduction problem. IEEE Trans. Autom. Control AC-27(2), 454–455 (1982)

    Google Scholar 

  2. Bandyopadhyay, B., Rao, A., Singh, H.: On Pade approximation for multivariable systems. IEEE Trans. Circ. Syst. 36(4), 638–639 (1989)

    CrossRef  MathSciNet  Google Scholar 

  3. Smamash, Y.: “Truncation method of reduction: a viable alternative. Electron. Lett. 17(2), 97–98 (1981)

    Google Scholar 

  4. Jamshidi, M.: An overview on the aggregation of large-scale systems, pp. 9–92 (1981)

    Google Scholar 

  5. Shamash, Y.: Model reduction using the Routh stability criterion and the Pade approximation technique. Int. J. Control 21(3), 475–484 (1975)

    CrossRef  Google Scholar 

  6. Alfi, A., Tenreiro Machado, J.A.: Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control. J. Comput. Nonlinear Dyn. 12, 0310141–0310146 (2007)

    Google Scholar 

  7. Alfi, A., Khosravi, A., Lari, A.: Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via synthesis. IMA J. Math. Control Inf. 31, 111–136 (2014)

    CrossRef  MathSciNet  Google Scholar 

  8. Mousavi, Y., Alfi, A.: A memetic algorithm applied to trajectory control by tuning of fractional order proportional-integral-derivative controllers. Appl. Soft Comput. 36, 599–617 (2015)

    Google Scholar 

  9. Alfi, A., Fateh, M.M.: Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst. Appl. 38, 12312–12317 (2011)

    CrossRef  Google Scholar 

  10. Axtell, M., Bise, E.M.: Fractional calculus applications in control systems. In: Proceeding of the IEEE 1990 National Aerospace and Electronics Conference, New York, pp. 563–566 (1990)

    Google Scholar 

  11. Dorcak, L.: Numerical models for simulation the fractional-order control systems, pp. 62–68. UEF SAV, The Academy of Sciences Institute of Experimental Physics, Kosice, Slovak Republic (1994)

    Google Scholar 

  12. Hassanpour, H., Ghadi, A.R.: Image enhancement via reducing impairment effects on image components. Int. J. Eng.-Trans. B Appl. 26(11), 1267–1274 (2013)

    Google Scholar 

  13. Soltani, J., Abjadi, N., Pahlavaninezhad, M.: An adaptive nonlinear controller for speed sensor less PMSM taking the iron loss resistance into account (research note). Int. J. Eng.-Trans. B: Appl. 21(2), 151–160 (2008)

    Google Scholar 

  14. Chen, Y.Q., Petras, I., Xue, D.: Fractional order control—a tutorial. In: American Control conference, 10–12 June 2009

    Google Scholar 

  15. Petras, I.: Stability of fractional-order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12(3), 269–298 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Petras, I.: Stability of fractional-order systems with rational orders. Mathematics—dynamical systems, pp. 1–25 (2008). arXiv: 0811.4102v2

    Google Scholar 

  17. Pilla, R., Tummala, A.S., Chintala, M.R.: Tuning of extended Kalman filter using self-adaptive differential evolution algorithm for sensorless permanent magnet synchronous motor drive. IJE Trans. B Appl. 29(11), 1565–1573 (2016)

    Google Scholar 

  18. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  19. Vinagre, B.M. Podlubny, I., Dorcak, L., Feliu, V.: On fractional PID controllers: a frequency domain Approach. In: Proceeding of the IFAC Workshop on Digital Control PID’00, Terrassa, Spain, pp. 53–55 (2000)

    Google Scholar 

  20. Yan, Z., He, J., Li, Y., Li, K., Song, C.: Realization of fractional order controllers by using multiple tuning-rules. Int. J. Signal Process. Image Process. Pattern Recogn. 6(6), 119–128 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Eligo, D.M. (2020). Designing of the PID and PIλ Dμ Controller for DC Motor. In: Sharma, V., Dixit, U., Sørby, K., Bhardwaj, A., Trehan, R. (eds) Manufacturing Engineering . Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4619-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4619-8_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4618-1

  • Online ISBN: 978-981-15-4619-8

  • eBook Packages: EngineeringEngineering (R0)