Skip to main content

Motor Imagery Experiment Using BCI: An Educational Technology Approach

  • Chapter
  • First Online:
Radical Solutions and Learning Analytics

Abstract

Three individuals participated in the experiment in a medical simulation lab at Bogotá’s Antonio Nariño University. The objective was to compare the power spectral densities of signals obtained with a brain-computer interface (BCI) using a Nautilus g.tec 32, for activities that constitute motor imagination of closing the right and left hand, implementing a protocol designed by the author. The methodology used is closely connected to BCI-based HCIs with educational application. The results obtained indicate a clear intergroup difference in the levels of power spectrum, and a similarity in the intragroup levels. Measuring the signals of cognitive processes in the frontal and parietal cortex is recommended for educational applications. Among the conclusions, we highlight the importance of signal treatment, the differences encountered in spectrum comparison, and the applicability of the technology in education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodda, S., Chandranpillai, H., Viswam, P., Krishna, S., Nair, B., & Diwakar, S. (2016). Categorizing imagined right and left motor imagery BCI tasks for low-cost robotic neuroprothesis. In International Conference on Electrical, Electronics, and Optomization Techniques (ICEEOT) (pp. 3670–3673).

    Google Scholar 

  • Braga, R. B., Lopes, C., & Becker, T. (2018). Round cosine transform based feature extraction of motor imagery EEG signals. In World Congress on Medical Physics and Biomedical Engineering (pp. 511–515).

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting. New York: Springer.

    Book  Google Scholar 

  • Chatterjee, R., Bandyopadhyay, T., & Sanyal Kumar, D. (2016). Effects of wavelets on quality of features in motor imagery EEG signal classification. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 1346–1350). Chennai, India: IEEE. https://doi.org/10.1109/WiSPNET.2016.7566356.

  • Chatterjee, R., Datta, A., & Kumar Sanyal, D. (2019). Ensemble learning approach to motor imagery EEG signals classification. In N. Dey, A. S. Ashour, S. Borra, & F. Shi, Machine learning in biosignal analysis and diagnostic imaging (pp. 183–208). Elsevier Inc.

    Google Scholar 

  • Chaudhary, S., Taran, S., & Bajaj, V. (2019). Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sensors Journal, 1–7.

    Google Scholar 

  • Daly, J. J., & Huggins, J. E. (2015). Brain-computer interface: Current and emerging rehabilitation applications. American Congress of Rehabilitation Medicine, 96, 1–7.

    Google Scholar 

  • Das, A., Suresh, S., & Sundararaja, N. (2016). A discriminative subject specific spatio spectral filter selection approach for EEG based motor imagery task classification. In Expert Systems with Applications (pp. 375–384).

    Google Scholar 

  • Formunyuy, V., & De Wet, L. (2015). Using a brain computer interface (BCI) in reducing math anxiety: Evidence for South Africa. Computers & Education, 81, 113–122.

    Article  Google Scholar 

  • Galway, L., Mc Chullagh, P., Lightbody, G., Brennan, C., & Trainor, D. (2015). The potential of the brain computer interface for learning: A technology review. In 2015 IEEE International Conference on Computer and Information Technology (pp. 1554–1559). Liverpool, UK: IEEE.

    Google Scholar 

  • Hassan, M. A., Mahmoud, E., Abdalla, A. H., & Wedaa, A. (2015). A comparison between windowing FIR filters for extracting the EEG components. Biosensors and Bioelectronics, 1–7.

    Google Scholar 

  • Hossan, A., & Mahmud Chowdhury, A. M. (2016). Real time EEG based automatic brainwave regulation by music. In 5th International Conference on Informatics, Electronics and Vision (ICIEV) (pp. 1–6). Dhaka, Bangladesh: IEEE. https://doi.org/10.1109/ICIEV.2016.7760107.

  • Hu, H., Guo, S., & Liu, R. W. (2017). An adaptative singular spectrum analysis method for extracting brain rhythms of electroencephalographye. Peerj, 1–17.

    Google Scholar 

  • Jiao, Y., Zhang, Y., Chen, X., Yin, E., Wang, X., & Cichocki, A. (2018). Sparse group representation model for motor imagery EEG classification. IEEE Journal of Biomedical and Health Informatics, 1–10.

    Google Scholar 

  • Katona, J., & Kovari, A. (2018). Examining the learning efficiency by a brain computer interface system. Acta Polytechnica Hungarica, 15, 251–280.

    Google Scholar 

  • Kaur, J., & Kaur, A. (2015). A review on analysis of EEG signals. In International Conference on Advances in Computer Engineering and Applications ICACEA (pp. 957–960).

    Google Scholar 

  • Kumar, J. S., & Bhuvaneswari, P. (2012). Analisys of electroencephalography (EEG) signals and its categorization: A study. Procedia Engineering, 38, 2525–2536. https://doi.org/10.1016/j.proeng.2012.06.298.

    Article  Google Scholar 

  • McFrland, D., & Wolpaw, J. R. (2017). EEG-based brain–computer interfaces. Current Opinion in Biomedical Engineering, 4, 194–200.

    Article  Google Scholar 

  • Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete time signal processing. New Jersy: Prentice Hall.

    Google Scholar 

  • Parvinnia, E., Sabeti, M., Jahromi Zolghadri, M., & Boostani, R. (2014). Cl¼assification of EEG signals using adaptative weighted distance nearest neighbor algorithm. Computing and Information Sciences, 1–6.

    Google Scholar 

  • Petre, S., & Randolph, M. (2005). Spectral analysis of signal. New Jersey: Prentice Hall.

    Google Scholar 

  • Puthankattil Subha, D., Joseph, P. K., Rajendra Acharya, U., & Choo Min, L. (2010). EEG signal analysis: A survey. Journal of Medical Systems, 34, 195–212.

    Article  Google Scholar 

  • Rashid, N., Igbal, J., Javed, A., Tiwana, M. I., & Shahbat Khan, U. (2018). Design of embedded system for multivariate classification of fingers and thumb movements using EEG signals for control of upper limb prosthesis. Hindawi BioMed Research International, 1–11.

    Google Scholar 

  • Raza, H., Rathee, D., Ming Zhou, S., Cecotti, H., & Prasad, J. (2019). Covariate shift estimation based adaptative ensemble learning for handling non stationary in motor imagery related EEG based brain computer interface. Neurocomputing, 343, 154–166.

    Article  Google Scholar 

  • Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: A general-purpose brain-computer interface (BCI) system BCI2000: A general-purpose brain-computer interface (BCI) system. Transactions on Biomedical Engineering, 51, 1034–1044.

    Article  Google Scholar 

  • Serrhini, M., & Dargham, A. (2017). Towar incorporating biosignals in online education case of assessing student attention with BCI. In A. Rocha, M. Serrhini, & C. Felgueiras (Eds.), Europe and MENA cooperation advances in information and communication technologies (pp. 135–146). Cham: Springer.

    Chapter  Google Scholar 

  • Shiratori, T., Tsubakida, H., Ishiyama, A., & Ono, Y. (2015). Three-class classification of motor imagery EEG data including “Rest State” using filter bank multi-class common spatial pattern. In The 3rd International Winter Conference on Brain Computer Interface (pp. 1–4).

    Google Scholar 

  • Skola, F., & Liarokapis, F. (2018). Embodied VR environment facilitates motor imagery brain–computer interface training. Compiters and Graphics Journal, 75, 59–71.

    Article  Google Scholar 

  • Soman, S., & Murty, B. K. (2015). Using brain computer interface for synthesized speech communication for the physically disabled. Procedia Computer Science, 292–298.

    Google Scholar 

  • Suarez Revelo, J. X., Ochoa Gómez, J. F., & Tobón Quintero, C. A. (2018a). Validation of EEG pre-processing pipeline by test retest reliability. In Applied computer sciences in engineering (pp. 1–10).

    Google Scholar 

  • Suarez Revelo, J. X., Ochoa Goméz, J. F., & Tobón Quntero, C. A. (2018b). Validation of EEG pre-processing pipeline by test-retest reliability. In Applied computer sciences in engineering. Communications in computer and information science (Vol. 916, pp. 290–299). Cham: Springer. https://doi.org/10.1007/978-3-030-00353-1_26.

  • Sun, L., & Feng Ren, Z. (2016). Classification of imagery motor EEG data with wavelet denoising and feature selection. In International Conference on Wavelet Analysis and Pattern Recognition (pp. 185–188). Jeju, South Korea: IEEE. https://doi.org/10.1109/ICWAPR.2016.7731641.

  • Xia, B., Cao, L., Maysam, O., Li, J., Xie, H., Su, C., & Birbaumer, N. (2017). A binary motor imagery task based brain computer interface for two dimensional movement control. Journal of Neural Engineering, 1–8.

    Google Scholar 

  • Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., … Zeng, H. (2018). Wavelet transform time frequency image and convolutional network based motor imagery EGG classification. IEEE Access, 6084–6093.

    Google Scholar 

  • Zhang, R., Yan, Y., Hu, Y., & Hong, S. S. (2017). EEG function network analysis of left and right hand motor imagery. National Nature Science Foundation of China, 346–350.

    Google Scholar 

  • Zhu, X., Li, P., Li, C., Yao, D., Zhang, R., & Xu, P. (2019). Separated channel convolutional neural network to realize the training free motor imagery BCI systems. Biomedical Signal Processing and Control, 396–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredys A. Simanca H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortiz Daza, C.A., Simanca H., F., Blanco Garrido, F., Burgos, D. (2020). Motor Imagery Experiment Using BCI: An Educational Technology Approach. In: Burgos, D. (eds) Radical Solutions and Learning Analytics. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4526-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4526-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4525-2

  • Online ISBN: 978-981-15-4526-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics