Skip to main content

PGPR and Earthworm-Assisted Phytoremediation of Heavy Metals

  • Chapter
  • First Online:
Earthworm Assisted Remediation of Effluents and Wastes

Abstract

The pronounced and major effects of contamination of the environment with heavy metals and other xenobiotic compounds have become a major problem worldwide. Soil contaminated with heavy metals poses serious threat to plants, animals as well as human health. Heavy metals due to their toxicity reduces the soil fertility, affects the plant photosynthetic efficiency, reduces yield of the crops, and causes nutrient imbalance. Phytoremediation an eco-friendly, clean, and green technology helps to remove contaminants from the polluted soils. The use of beneficial microorganisms along with plants is considered as an effective method for increasing the efficiency of remediation of contaminated soils. Earthworms also play an important role in remediation process. Interaction of plants with microflora plays a vital role in bioavailability of the metals and their bioaccumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Mannai K, Jebara M (2019) Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch Microbiol 201(1):107–121

    CAS  Google Scholar 

  • Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 21:e00305

    Google Scholar 

  • Abhilash PC, Edrisi SA, Chotte JL (2019) Land restoration for achieving SDG 2: end. Sustain Dev Goals 33

    Google Scholar 

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27(4):474–488

    CAS  Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    CAS  Google Scholar 

  • Akhtar MJ, Ullah S, Ahmad I, Rauf A, Nadeem SM, Khan MY et al (2018) Nickel phytoextraction through bacterial inoculation in Raphanus sativus. Chemosphere 190:234–242

    CAS  Google Scholar 

  • Akhzari D, Khedmati M, Soleymani AR, Pessarakli M (2016) Growth, survival, protein content, and phytoremediation potency of various rangeland plant species (Medicago polymorpha L., Medicago rigidula L., and Onobrychis sativa L.) grown in vermicompost-containing potting media. Commun Soil Sci Plant Anal 47(20):2261–2270

    CAS  Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34(6):2181–2186

    Google Scholar 

  • Arsenov D, Župunski M, Borišev M, Nikolić N, Pilipovic A, Orlovic S et al (2020) Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis. Int J Phytoremediation 22(1):29–39

    CAS  Google Scholar 

  • Arshad M, Javaid A, Manzoor M, Hina K, Ali MA, Ahmed I (2019) Isolation and identification of chromium-tolerant bacterial strains and their potential to promote plant growth. In: E3S web of conferences, vol 96. EDP Sciences, Les Ulis, p 01005

    Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:848614

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    CAS  Google Scholar 

  • Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3(1–4):643–654

    CAS  Google Scholar 

  • Bali S, Jamwal VL, Kaur P, Kohli SK, Ohri P, Gandhi SG et al (2019) Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against lead (Pb) toxicity in tomato. Ecotoxicol Environ Saf 174:283–294

    CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    CAS  Google Scholar 

  • Blondel C, Khelalfa F, Reynaud S, Fauvelle F, Raveton M (2016) Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning 1H NMR spectroscopy. Environ Pollut 214:539–548

    CAS  Google Scholar 

  • Bongoua-Devisme AJ, Akotto OF, Guety T, Kouakou S, Edith AA, Ndoye F, Diouf D (2019) Enhancement of phytoremediation efficiency of Acacia mangium using earthworms in metal-contaminated soil in Bonoua, Ivory Coast. Afr J Biotechnol 18(27):622–631

    CAS  Google Scholar 

  • Boonyapookana B, Upatham ES, Krutrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. Int J Phytoremediation 4:87–100

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    CAS  Google Scholar 

  • Chand S, Pandey A, Patra DD (2012a) Influence of nickel and lead applied in combination with vermicompost on growth and accumulation of heavy metals by Mentha arvensis Linn. cv.‘Kosi’. Indian J Nat Prod Resour 3:256–261

    Google Scholar 

  • Chand S, Pandey A, Patra DD (2012b) Influence of vermicompost on dry matter yield and uptake of Ni and Cd by chamomile (Matricaria chamomilla) in Ni-and Cd-Polluted Soil. Water Air Soil Pollut 223(5):2257–2262

    CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36(5):1429–1443

    CAS  Google Scholar 

  • Chaturvedi R, Favas P, Pratas J, Varun M, Paul MS (2019) EDTA-assisted metal uptake in Raphanus sativus L. and Brassica oleracea L.: assessment of toxicity and food safety. Bull Environ Contam Toxicol 103(3):490–495

    CAS  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81(2):253–264

    CAS  Google Scholar 

  • Cheng J, Wong MH (2008) Effects of earthworm (Pheretima sp.) on three sequential ryegrass harvests for remediating lead/zinc mine tailings. Int J Phytoremediation 10(3):173–184

    CAS  Google Scholar 

  • Dai H, Cao F, Chen X, Zhang M, Ahmed IM, Chen ZH et al (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS One 8(5):e63428

    CAS  Google Scholar 

  • Dandan W, Huixin L, Feng H, Xia W (2007) Role of earthworm-straw interactions on phytoremediation of Cu contaminated soil by ryegrass. Acta Ecol Sin 27(4):1292–1298

    Google Scholar 

  • Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189

    CAS  Google Scholar 

  • Du YL, He MM, Xu M, Yan ZG, Zhou YY, Guo GL et al (2014) Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biol Biochem 72:193–202

    CAS  Google Scholar 

  • Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D (2018) Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett 16(4):1169–1192

    CAS  Google Scholar 

  • El-Meihy RM, Abou-Aly HE, Youssef AM, Tewfike TA, El-Alkshar EA (2019) Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ Exp Bot 162:295–301

    CAS  Google Scholar 

  • Elyamine A, Moussa M, Ismael M, Wei J, Zhao Y, Wu Y, Hu C (2018) Earthworms, rice straw, and plant interactions change the organic connections in soil and promote the decontamination of cadmium in soil. Int J Environ Res Public Health 15(11):2398

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Google Scholar 

  • Fatima H, Ahmed A (2018) Micro-remediation of chromium contaminated soils. Peer J 6:e6076 0

    Google Scholar 

  • Führs H, Specht A, Erban A, Kopka J, Horst WJ (2011) Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. J Exp Bot 63(1):329–340

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    CAS  Google Scholar 

  • Giasson P, Jaouich A, Cayer P, Gagné S, Moutoglis P, Massicotte L (2006) Enhanced phytoremediation: A study of mycorrhizoremediation of heavy metal–contaminated soil. Remed J Environ Cleanup Costs Technol Techn 17(1):97–110

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Google Scholar 

  • Golrizkhatami F, Farsad F, Rafati M (2018) The combined effect of EDTA and vermicompost on removal of lead from soil by Ocimum basilicum. Asian J Water Environ Pollut 15(4):41–45

    Google Scholar 

  • González A, Steffen KL, Lynch JP (1998) Light and excess manganese: implications for oxidative stress in common bean. Plant Physiol 118(2):493–504

    Google Scholar 

  • Green CE, Chaney RL, Bouwkamp J (2003) Interactions between cadmium uptake and phytotoxic levels of zinc in hard red spring wheat. J Plant Nutr 26(2):417–430

    CAS  Google Scholar 

  • Guo P, Qi YP, Yang LT, Lai NW, Ye X, Yang Y, Chen LS (2017) Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance. Front Plant Sci 8:330

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    CAS  Google Scholar 

  • Hoehne L, de Lima CV, Martini MC, Altmayer T, Brietzke DT, Finatto J et al (2016) Addition of vermicompost to heavy metal-contaminated soil increases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water Air Soil Pollut 227(12):443

    Google Scholar 

  • Huang H, Yu N, Wang L, Gupta DK, He Z, Wang K et al (2011) The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol 102(23):11034–11038

    CAS  Google Scholar 

  • Huang XH, Zhu F, Yan WD, Chen XY, Wang GJ, Wang RJ (2019) Effects of Pb and Zn toxicity on chlorophyll fluorescence and biomass production of Koelreuteria paniculata and Zelkova schneideriana young plants. Photosynthetica 57(2):688–697

    CAS  Google Scholar 

  • Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J (2009) Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol 151(2):768–781

    CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7(5):547–558

    CAS  Google Scholar 

  • Jan S, Parray JA (2016) Approaches to heavy metal tolerance in plants. Springer, Singapore, pp 1–18

    Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Google Scholar 

  • Jisha CK, Bauddh K, Shukla SK (2017) Phytoremediation and bioenergy production efficiency of medicinal and aromatic plants. In: Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 287–304

    Google Scholar 

  • Jordao CP, Fialho LL, Neves JCL, Cecon PR, Mendonça ES, Fontes RLF (2007) Reduction of heavy metal contents in liquid effluents by vermicomposts and the use of the metal-enriched vermicomposts in lettuce cultivation. Bioresour Technol 98(15):2800–2813

    CAS  Google Scholar 

  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    CAS  Google Scholar 

  • Jusselme MD, Poly F, Miambi E, Mora P, Blouin M, Pando A, Rouland-Lefèvre C (2012) Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207

    CAS  Google Scholar 

  • Kaur P, Bali S, Sharma A, Vig AP, Bhardwaj R (2017) Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environ Sci Pollut Res 24(15):13452–13465

    CAS  Google Scholar 

  • Kaur P, Bali S, Sharma A, Vig AP, Bhardwaj R (2018) Role of earthworms in phytoremediation of cadmium (Cd) by modulating the antioxidative potential of Brassica juncea L. Appl Soil Ecol 124:306–316

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol Plant 168:345–360

    CAS  Google Scholar 

  • Ke M, Qu Q, Peijnenburg WJGM, Li X, Zhang M, Zhang Z et al (2018) Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci Total Environ 644:1070–1079

    CAS  Google Scholar 

  • Khan N, Bano A (2019) Rhizobacteria and abiotic stress management. In: Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 65–80

    Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):5855

    Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R et al (2018) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255(1):11–24

    CAS  Google Scholar 

  • Kumar BA, Jothiramalingam S, Thiyagarajan SK, Hidhayathullakhan T, Nalini R (2014) Phytoremediation of heavy metals from paper mill effluent soil using Croton sparsiflorus. Int Lett Chem Phys Astron 17(1):1–9

    Google Scholar 

  • Łabanowska M, Filek M, Kościelniak J, Kurdziel M, Kuliś E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings—EPR, enzymatic and fluorescence studies. J Plant Physiol 169(3):275–284

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31(1):109–120

    CAS  Google Scholar 

  • Lemtiri A, Liénard A, Alabi T, Brostaux Y, Cluzeau D, Francis F, Colinet G (2016) Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl Soil Ecol 104:67–78

    Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 72(3):391–397

    CAS  Google Scholar 

  • Liu J, Piñeros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56(3):221–230

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93(7):1386–1392

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813

    CAS  Google Scholar 

  • Mahdavi V, Farimani MM, Fathi F, Ghassempour A (2015) A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress. Anal Biochem 478:65–72

    CAS  Google Scholar 

  • Manzoor M, Abid R, Rathinasabapathi B, De Oliveira LM, da Silva E, Deng F et al (2019) Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Sci Total Environ 660:18–24

    CAS  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Alberdi M, Ivanov AG, Krol M, Hüner NPA (2012) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64(1):343–354

    Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018) Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol 49(1):29–37

    CAS  Google Scholar 

  • Ong GH, Ho XH, Shamkeeva S, Manasha Savithri Fernando AS, Wong LS (2017) Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediat J 27(4):59–63

    Google Scholar 

  • Ozturk S, Kaya T, Aslim B, Tan S (2012) Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J Hazard Mater 231:64–69

    Google Scholar 

  • Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP (2020) Improvement of rice plant productivity by native Cr (VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 240:124895

    CAS  Google Scholar 

  • Pereira SI, Figueiredo PI, Barros AS, Dias MC, Santos C, Duarte IF, Gil AM (2014) Changes in the metabolome of lettuce leaves due to exposure to mancozeb pesticide. Food Chem 154:291–298

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    CAS  Google Scholar 

  • Ren X, Guo S, Tian W, Chen Y, Han H, Chen E et al (2019) Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Front Microbiol 10:1455

    Google Scholar 

  • Revathi K, Haribabu TE, Sudha PN (2011) Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci 2(2):418

    Google Scholar 

  • Robinson B, Fernández JE, Madejón P, Marañón T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249(1):117–125

    CAS  Google Scholar 

  • Ruiz E, Alonso-Azcárate J, Rodríguez L (2011) Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Environ Pollut 159(3):722–728

    CAS  Google Scholar 

  • Saha P, Rao KV (2017) Biosurfactants—a current perspective on production and applications. Nat Environ Pollut Technol 16(1):181–188

    Google Scholar 

  • Santana NA, Rabuscke CM, Soares VB, Soriani HH, Nicoloso FT, Jacques RJS (2018) Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environ Sci Pollut Res 25(13):12663–12677

    CAS  Google Scholar 

  • Santana NA, Ferreira PAA, Tarouco CP, Schardong IS, Antoniolli ZI, Nicoloso FT, Jacques RJS (2019) Earthworms and mycorrhization increase copper phytoextraction by Canavalia ensiformis in sandy soil. Ecotoxicol Environ Saf 182:109383

    CAS  Google Scholar 

  • Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 67–97

    Google Scholar 

  • Setia RC, Kaur N, Setia N, Nayyar H (2008) Heavy metal toxicity in plants and phytoremediation. In: Crop improvement: strategies and applications. IK International Publishing House Pvt. Ltd., New Delhi, pp 206–218

    Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A et al (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: reasons, mechanisms and remediation possibilities–A review. Plant Physiol Biochem 107:104–115

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    CAS  Google Scholar 

  • Sharma DK, Tomar S, Chakraborty D (2017) Role of earthworm in improving soil structure and functioning. Curr Sci 113:1064–1071

    Google Scholar 

  • Sharma R, Bhardwaj R, Thukral AK, Al-Huqail AA, Siddiqui MH, Ahmad P (2019) Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicol Environ Saf 182:109436

    CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63(1–3):317–326

    CAS  Google Scholar 

  • Shi R, Weber G, Köster J, Reza-Hajirezaei M, Zou C, Zhang F, von Wirén N (2012) Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants. New Phytol 195(2):372–383

    CAS  Google Scholar 

  • Sivarajasekar N, Baskar R (2015a) Biosorption of basic violet 10 onto activated Gossypium hirsutum seeds: Batch and fixed-bed column studies. Chin J Chem Eng 23(10):1610–1619

    CAS  Google Scholar 

  • Sivarajasekar N, Baskar R (2015b) Agriculture waste biomass valorisation for cationic dyes sequestration: a concise review. J Chem Pharm Res 7:737–748

    CAS  Google Scholar 

  • Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P (2016) Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ Sci Pollut Res 23(2):962–973

    CAS  Google Scholar 

  • Turan V, Ramzani PMA, Ali Q, Abbas F, Iqbal M, Irum A, Khan WUD (2018) Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch Agron Soil Sci 64(8):1053–1067

    CAS  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Varghese SM, Prabha ML (2014) Biochemical characterization of vermiwash and its effect on growth of Capsicum frutescens. Malaya J Biosci 1(2):86–91

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181(4):759–776

    CAS  Google Scholar 

  • Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544

    CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171(1):1–15

    Google Scholar 

  • Wang K, Zhang J, Zhu Z, Huang H, Li T, He Z et al (2012) Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. J Soils Sediments 12(7):1089–1099

    CAS  Google Scholar 

  • Wang K, Liu Y, Song Z, Wang D, Qiu W (2019a) Chelator complexes enhanced Amaranthus hypochondriacus L phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237:124480

    CAS  Google Scholar 

  • Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y et al (2019b) Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234:769–776

    CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    CAS  Google Scholar 

  • Yahaghi Z, Shirvani M, Nourbakhsh F, De La Pena TC, Pueyo JJ, Talebi M (2018) Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. J Microbiol Biotechnol 28(7):1156–1167

    CAS  Google Scholar 

  • Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y (2012) Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot 63(7):2729–2737

    CAS  Google Scholar 

  • Yang W, Wang Y, Liu D, Hussain B, Ding Z, Zhao F, Yang X (2019) Interactions between cadmium and zinc in uptake, accumulation and bioavailability for Salix integra with respect to phytoremediation. Int J Phytoremediation 22(6):628–637

    Google Scholar 

  • Yasin M, El-Mehdawi AF, Pilon-Smits EA, Faisal M (2015) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17(8):777–786

    CAS  Google Scholar 

  • Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS et al (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158(8):2757–2765

    CAS  Google Scholar 

  • Zhao Y, Zhang L, Zhao C, Hu C, Li Y, Zhao J et al (2015) Metabolic responses of rice leaves and seeds under transgenic backcross breeding and pesticide stress by pseudotargeted metabolomics. Metabolomics 11(6):1802–1814

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. et al. (2020). PGPR and Earthworm-Assisted Phytoremediation of Heavy Metals. In: Bhat, S., Vig, A., Li, F., Ravindran, B. (eds) Earthworm Assisted Remediation of Effluents and Wastes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4522-1_14

Download citation

Publish with us

Policies and ethics