Abstract
This paper presents the neuro-fuzzy modeling approach to analyze the test results of MR damper. Every Electric current in provides to MR Fluid will have a different output. On the other hand, the meandering type valve has a different output and calculation. Therefore, the prototype of MR Damper that has been made was taken to a laboratory to test using Dynamic Testing Machine. The data test result will be analyzed using Neuro-Fuzzy. This paper aims to find a correlation between every variable is there in the testing of MR Damper. For the hysteresis modeling purpose, some parts of the data are taken as the training data source for the optimization parameters in the Neuro-Fuzzy model. The performance of the trained Neuro-Fuzzy model is assessed by validating the model output with the remaining measurement data and benchmarking. The assigned membership function results in a minimum error of 0.16 from 3000 epoch from 3 sets of data given as training data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sims ND, Stanway R, Johnson AR (1999) Vibration control using smart fluids: a state-of-the-art review. Shock Vib Dig 31:195–203. https://doi.org/10.1177/058310249903100302
Shiraishi T, Morishita S, Gavin HP (2004) Estimation of equivalent permeability in magnetorheological fluid considering cluster formation of particles. J Appl Mech 71:201–207. https://doi.org/10.1115/1.1667530
Ido Y, Yamaguchi T, Kiuchi Y (2011) Distribution of micrometer-size particles in magnetic fluids in the presence of steady uniform magnetic field. J Magn Magn Mater 323:1283–1287. https://doi.org/10.1016/j.jmmm.2010.11.022
Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569. https://doi.org/10.1016/S0957-4158(99)00064-1
Kulkarni P, Ciocanel C, Vieira SL, Naganathan N (2003) Study of the behavior of MR fluids in squeeze, torsional and valve modes. J Intell Mater Syst Struct 14:99–104. https://doi.org/10.1177/1045389X03014002005
Li Z-X, Xu L-H (2005) Performance tests and hysteresis model of MRF-04K damper. J Struct Eng 131:1303–1306. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1303)
Pappas Y, Klingenberg DJ (2005) Simulations of magnetorheological suspensions in Poiseuille flow. Rheol Acta 45:621–629. https://doi.org/10.1007/s00397-005-0016-8
Parlak Z, Engin T, Ari V, Sahin I, Calli I (2010) Geometrical optimisation of vehicle shock dampers with magnetorheological fluid. Int J Veh Des 54:371–392. https://doi.org/10.1504/IJVD.2010.036842
de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7:3701–3710. https://doi.org/10.1039/c0sm01221a
Sung K-G, Choi S-B, Lee H-G, Min K-W, Lee S-H (2005) Performance comparison of MR dampers with three different working modes: shear, flow and mixed mode. Int J Mod Phys B 19:1556–1562. https://doi.org/10.1142/S021797920503058X
Imaduddin F, Mazlan SA, Ubaidillah, Zamzuri H, Fatah AYA (2016) Testing and parametric modeling of magnetorheological valve with meandering flow path, Nonlinear Dyn 85(1):287–302. http://dx.doi.org/10.1007/s11071-016-2684-6
Zhu X, Jing X, Cheng L (2012) Magnetorheological fluid dampers: a review on structure design and analysis. J Intell Mater Syst Struct 23:839–873. https://doi.org/10.1177/1045389X12436735
Wang DH, Ai HX, Liao WH (2009) A magnetorheological valve with both annular and radial fluid flow resistance gaps. Smart Mater Struct 18(11):115001
Fatah AYA, Mazlan SA, Koga T, Zamzuri H, Imaduddin F (2016) Design of magnetorheological valve using serpentine flux path method. Int J Appl Electromagnet Mech 50(1):29–44. https://doi.org/10.3233/JAE-150037
Imaduddin F, Mazlan SA, Idris MH, Bahiuddin I (2017) Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy. J King Saud Univ-Sci 29(4):468–477, ISSN 1018–3647. https://doi.org/10.1016/j.jksus.2017.08.012
Acknowledgements
The work presented in this study is funded by Universitas Sebelas Maret through International Collaboration Grant 2019 (ID:66502032019).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wirawan, J.W., Oryzanandi, S.S., Masa’id, A., Imaduddin, F., Ubaidillah, Bahiuddin, I. (2020). Neuro-fuzzy Hysteresis Modeling of Magnetorheological Dampers. In: Sabino, U., Imaduddin, F., Prabowo, A. (eds) Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4481-1_59
Download citation
DOI: https://doi.org/10.1007/978-981-15-4481-1_59
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-4480-4
Online ISBN: 978-981-15-4481-1
eBook Packages: EngineeringEngineering (R0)