Skip to main content

Static Optimization and Scheduling of the Discrete Manufacturing System’s Energy Efficiency Based on the Integration of Knowledge and MOPSO

  • Chapter
  • First Online:
Quantitative Analysis and Optimal Control of Energy Efficiency in Discrete Manufacturing System

Abstract

Scholars both at home and abroad have undertaken numerous research and proposed many optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberge V, Tarbouchi M, Labonte G (2012) Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans Indust Inf 9(1):132–141

    Article  Google Scholar 

  2. Zhao SZ, Suganthan PN, Pan QK et al (2011) Dynamic multi-swarm particle swarm optimizer with harmony search. Expert Syst Appl 38(4):3735–3742

    Article  Google Scholar 

  3. Liu QW (2014) Research on artificial bee colony and its application in scheduling problems. Beijing Jiaotong University

    Google Scholar 

  4. Silva RR, Brandã£O CRF (2010) Morphological patterns and community organization in leaf-litter ant assemblage. Ecol Monog 80(1):107–124

    Google Scholar 

  5. Gui WH, Chen XF, Yang CH et al (2016) Knowledge automation and its industrial application. Sci Sini (Inform) 46(8): 1016

    Google Scholar 

  6. Sha DY, Lin HH (2010) A multi-objective PSO for job-shop scheduling problems. Expert Syst Appl 37(2):1065–1070

    Article  Google Scholar 

  7. Zhang CY, Rao YQ, Li PG et al (2007) Bilevel genetic algorithm for the flexible job-shop scheduling problem. Chin J Mech Eng 43(4):119–124

    Article  Google Scholar 

  8. Zhang C, Li P, Rao Y, Li S (2005) A new hybrid GA/SA algorithm for the job shop scheduling problem. In: Evolutionary computation in combinatorial optimization. Springer, Berlin Heidelberg, pp 246–259

    Google Scholar 

  9. Zhang CY, Guan ZL, Liu Q et al (2008) New scheduling type applied to solving job-shop scheduling problem. J Mech Eng 44(10):24–31

    Article  Google Scholar 

  10. Balas E (1969) Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Oper Res 17(6):941–957

    Article  MathSciNet  Google Scholar 

  11. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pare-to evolutionary algorithm for multiobjective optimization. TIK-report, 103, Swiss Federal Institute of Technology, pp 1–21

    Google Scholar 

  12. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  13. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  14. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  15. Kacem I, Hammadi S, Borne P (2002) Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math Comput Simul 60(3):245–276

    Article  MathSciNet  Google Scholar 

  16. Brandimarte P (1993) Routing and scheduling in a flexible job shop by tabu search. Ann Oper Res 41(3):157–183

    Article  Google Scholar 

  17. Li J, Pan Q, Liang YC (2010) An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Comput Ind Eng 59(4):647–662

    Article  Google Scholar 

  18. Bagheri A, Zandieh M, Mahdavi I et al (2010) An artificial immune algorithm for the flexible job-shop scheduling problem. Future Gener Comput Syst 26(4):533–541

    Article  Google Scholar 

  19. Xing LN, Chen YW, Wang P et al (2010) A knowledge-based ant colony optimization for flexible job shop scheduling problems. Appl Soft Comput 10(3):888–896

    Article  Google Scholar 

  20. Wang X, Gao L, Zhang C, Shao X (2010) A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. Int J Adv Manufac Technol 51(5–8):757–767

    Article  Google Scholar 

  21. Li JQ, Pan QK, Gao KZ (2011) Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int J Adv Manuf Technol 55(9–12):1159–1169

    Article  Google Scholar 

  22. Chiang TC, Lin HJ (2013) A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. Int J Prod Econ 141(1):87–98

    Article  Google Scholar 

  23. Xing LN, Chen YW, Yang KW (2009) An efficient search method for multi-objective flexible job shop scheduling problems. J Intell Manuf 20(3):283–293

    Article  Google Scholar 

  24. Li J, Pan Q, Xie S (2012) An effective shuffled frog-leaping algorithm for multi-objective flexible job shop scheduling problems. Appl Math Comput 218(18):9353–9371

    MathSciNet  MATH  Google Scholar 

  25. Li JQ, Pan QK, Suganthan PN et al (2011) A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling problem. Int J Adv Manuf Technol 52(5–8):683–697

    Article  Google Scholar 

  26. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybernet. Part C: Appl Rev 28(3):392–403

    Google Scholar 

  27. Adibi MA, Zandieh M, Amiri M (2010) Multi-objective scheduling of dynamic job shop using variable neighborhood search. Expert Syst Appl 37(1):282–287

    Article  Google Scholar 

  28. Wang XJ, Guo YJ (2004) Aggregate analysis of group decision making based on G1-method. Chin J Manage Sci, 14–16

    Google Scholar 

  29. Huang ZT, Yang J, Zhang CY et al (2016) Energy-oriented CNC milling process modelling and parameter optimization. China Mech Eng 27(18):2524–2532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Liu, CL., Ji, ZC. (2020). Static Optimization and Scheduling of the Discrete Manufacturing System’s Energy Efficiency Based on the Integration of Knowledge and MOPSO. In: Quantitative Analysis and Optimal Control of Energy Efficiency in Discrete Manufacturing System. Springer, Singapore. https://doi.org/10.1007/978-981-15-4462-0_8

Download citation

Publish with us

Policies and ethics