Skip to main content

ToMRobot 2.0: Real Mobility Mechanism in MANET Testbed Using Mobile Robot

  • Conference paper
  • First Online:
Book cover Futuristic Trends in Networks and Computing Technologies (FTNCT 2019)

Abstract

This paper is a continuation of our previous paper under the same topic, ToMRobot 1.0. Our main goal of developing ToMRobot 2.0 is to improve the ToMRobot 1.0 that we developed earlier. ToMRobot was developed because we think mobile robot technology is more practical than other approaches as a real world mobility mechanism in MANET testbed. But to develop our own mobile robot at low cost and at the same time not complex is very challenging. The challenge is overcome through the use of easy-to-use components, self-built components using 3D printers and the use of mobile robot designs that have proven to be easily developed, cheap and effective. The use of the Robot Operating System (ROS) as the main robot software framework greatly helps to reduce the complexity of developing control system for mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://marvelmind.com

  2. 2.

    https://www.pozyx.io

  3. 3.

    http://cricket.csail.mit.edu

  4. 4.

    https://www.internalpositioning.com

  5. 5.

    https://indoo.rs

  6. 6.

    http://www.oym.co

  7. 7.

    https://locatify.com

  8. 8.

    http://wiki.ros.org/global_planner.

  9. 9.

    http://wiki.ros.org/multi_robot_collision_avoidance.

  10. 10.

    https://www.ros.org.

  11. 11.

    https://github.com/agnunez/espros.

References

  1. Lenders, V., Wagner, J., May, M.: Analyzing the impact of mobility in ad hoc networks. In: Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks: From Theory to Reality, REALMAN 2006, pp. 39–46. ACM, New York (2006). https://doi.org/10.1145/1132983.1132991. http://doi.acm.org/10.1145/1132983.1132991

  2. Kulla, E., Hiyama, M., Ikeda, M., Barolli, L.: Comparison of experimental results of a MANET testbed in different environments considering BATMAN protocol. In: 2011 Third International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 1–7 (2011). https://doi.org/10.1109/incos.2011.69

  3. Kulla, E., Ikeda, M., Barolli, L., Xhafa, F., Iwashige, J.: A survey on MANET testbeds and mobility models. In: Park, J.J.H., Chao, H.-C., S. Obaidat, M., Kim, J. (eds.) Computer Science and Convergence. LNEE, vol. 114, pp. 651–657. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-2792-2_63. http://link.springer.com.ezproxy.psz.utm.my/chapter/10.1007/978-94-007-2792-2_63

    Chapter  Google Scholar 

  4. Vijayavani, G.R., Prema, G.: Performance comparison of MANET routing protocols with mobility model derived based on realistic mobility pattern of mobile nodes. In: 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 32–36 (2012). https://doi.org/10.1109/icaccct.2012.6320729

  5. Farkhana, M., Abdul Hanan, A.: Mobility in mobile ad-hoc network testbed using robot: technical and critical review. Robot. Auton. Syst. 108, 153–178 (2018). https://doi.org/10.1016/j.robot.2018.07.007. http://www.sciencedirect.com/science/article/pii/S0921889018302458

  6. Raychaudhuri, D., et al.: Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. In: Wireless Communications and Networking Conference 2005, vol. 3, pp. 1664–1669. IEEE (2005)

    Google Scholar 

  7. Yoon, H., Kim, J., Ott, M., Rakotoarivelo, T.: Mobility emulator for DTN and MANET applications. In: Proceedings of the 4th ACM International Workshop on Experimental Evaluation and Characterization, WINTECH 2009, pp. 51–58. ACM, New York (2009). https://doi.org/10.1145/1614293.1614303. http://doi.acm.org/10.1145/1614293.1614303

  8. Clancy, T., Walker, B.: MeshTest: laboratory-based wireless testbed for large topologies. In: 3rd International Conference on Testbeds and Research Infrastructure for the Development of Networks and Communities 2007, TridentCom 2007, pp. 1–6 (2007). https://doi.org/10.1109/tridentcom.2007.4444659

  9. Seligman, M., Walker, B.D., Clancy, T.C.: Delay-tolerant network experiments on the meshtest wireless testbed. In: Proceedings of the Third ACM Workshop on Challenged Networks, CHANTS 2008, pp. 49–56. ACM, New York (2008). https://doi.org/10.1145/1409985.1409996. http://doi.acm.org/10.1145/1409985.1409996

  10. Walker, B., Clancy, C.: A quantitative evaluation of the meshtest wireless testbed. In: Proceedings of the 4th International Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, TridentCom 2008, pp. 29:1–29:6. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008). http://dl.acm.org/citation.cfm?id=1390576.1390612

  11. Walker, B., Vo, I., Beecher, M., Clancy, C.: A demonstration of the meshtest wireless testbed. In: 5th International Conference on Testbeds and Research Infrastructures for the Development of Networks Communities and Workshops 2009, TridentCom 2009, p. 1 (2009). https://doi.org/10.1109/tridentcom.2009.4976234

  12. Hahn, D., Lee, G., Kim, Y., Walker, B., Beecher, M., Mundur, P.: DTN experiments on the virtual meshtest testbed. In: Proceedings of the 5th ACM Workshop on Challenged Networks, CHANTS 2010, pp. 79–82. ACM, New York (2010). https://doi.org/10.1145/1859934.1859952. http://doi.acm.org/10.1145/1859934.1859952

  13. Kim, Y., Taylor, K., Dunbar, C., Walker, B., Mundur, P.: Reality vs emulation: running real mobility traces on a mobile wireless testbed. In: Proceedings of the 3rd ACM International Workshop on MobiArch, HotPlanet 2011, pp. 23–28. ACM, New York (2011). https://doi.org/10.1145/2000172.2000180. http://doi.acm.org/10.1145/2000172.2000180

  14. Maltz, D.A., Broch, J., Johnson, D.B.: Experiences designing and building a multi-hop wireless ad hoc network testbed. Special Purpose Grant in Science and Engineering F19628-96-C-0061, Carnegie Mellon University, USA (1999)

    Google Scholar 

  15. Maltz, D., Broch, J., Johnson, D.: Lessons from a full-scale multihop wireless ad hoc network testbed. IEEE Pers. Commun. 8(1), 8–15 (2001). https://doi.org/10.1109/98.904894

    Article  Google Scholar 

  16. Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., Polit, S.: Ad hoc networking with directional antennas: a complete system solution. IEEE J. Sel. Areas Commun. 23(3), 496–506 (2005). https://doi.org/10.1109/jsac.2004.842556

    Article  Google Scholar 

  17. Veeravuttiphol, P., Komolkiti, P., Aswakul, C.: MANET testbeds for evaluation of real-time controls in multimedia transmissions. In: 3rd International Conference on Testbeds and Research Infrastructure for the Development of Networks and Communities 2007, TridentCom 2007, pp. 1–6 (2007). https://doi.org/10.1109/tridentcom.2007.4444705

  18. Tsukada, M., Ernst, T.: Vehicle communication experiment environment with MANET and NEMO. In: International Symposium on Applications and the Internet Workshops 2007, SAINT Workshops 2007, p. 45 (2007). https://doi.org/10.1109/saint-w.2007.104

  19. Yazir, Y., Jahanbakhsh, K., Ganti, S., Shoja, G., Coady, Y.: A low-cost realistic testbed for mobile ad hoc networks. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing 2009, PacRim 2009, pp. 671–676 (2009). https://doi.org/10.1109/pacrim.2009.5291291

  20. Galati, A., Bourchas, T., Siby, S., Frey, S., Olivares, M., Mangold, S.: Mobile-enabled delay tolerant networking in rural developing regions. In: 2014 IEEE Global Humanitarian Technology Conference (GHTC), pp. 699–705 (2014). https://doi.org/10.1109/ghtc.2014.6970359

  21. Jetcheva, J., Hu, Y.C., PalChaudhuri, S., Saha, A., Johnson, D.: Design and evaluation of a metropolitan area multitier wireless ad hoc network architecture. In: Fifth IEEE Workshop on Mobile Computing Systems and Applications 2003, Proceedings, pp. 32–43 (2003). https://doi.org/10.1109/mcsa.2003.1240765

  22. Pentland, A., Fletcher, R., Hasson, A.: DakNet: rethinking connectivity in developing nations. Computer 37(1), 78–83 (2004). https://doi.org/10.1109/mc.2004.1260729

    Article  Google Scholar 

  23. Kutscher, D., Greifenberg, J., Loos, K.: Scalable DTN distribution over uni-directional links. In: Proceedings of the 2007 Workshop on Networked Systems for Developing Regions, NSDR 2007, pp. 6:1–6:6. ACM, New York (2007). https://doi.org/10.1145/1326571.1326580. http://doi.acm.org/10.1145/1326571.1326580

  24. Coulson, G., et al.: Flexible experimentation in wireless sensor networks. Commun. ACM 55(1), 82–90 (2012). https://doi.org/10.1145/2063176.2063198. http://doi.acm.org/10.1145/2063176.2063198

  25. Zarafshan-Araki, M., Chin, K.W.: TrainNet: a transport system for delivering non real-time data. Comput. Commun. 33(15), 1850–1863 (2010). https://doi.org/10.1016/j.comcom.2010.06.008. http://www.sciencedirect.com/science/article/pii/S0140366410002690

  26. Nati, M., Gluhak, A., Abangar, H., Headley, W.: SmartCampus: a usercentric testbed for Internet of Things experimentation. In: 2013 16th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1–6 (2013)

    Google Scholar 

  27. Nati, M., Gluhak, A., Domaszewicz, J., Lalis, S., Moessner, K.: Lessons from SmartCampus: external experimenting with user-centric Internet-of-Things testbed. Wireless Pers. Commun. 93(3), 709–723 (2014). https://doi.org/10.1007/s11277-014-2223-z. http://link.springer.com/article/10.1007/s11277-014-2223-z

    Article  Google Scholar 

  28. Bromage, S., et al.: SCORPION: a heterogeneous wireless networking testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 13(1), 65–68 (2009). https://doi.org/10.1145/1558590.1558604. http://doi.acm.org.ezproxy.psz.utm.my/10.1145/1558590.1558604

  29. Kazdaridis, G., Stavropoulos, D., Maglogiannis, V., Korakis, T., Lalis, S., Tassiulas, L.: NITOS BikesNet: enabling mobile sensing experiments through the OMF framework in a city-wide environment. In: 2014 IEEE 15th International Conference on Mobile Data Management (MDM), vol. 1, pp. 89–98 (2014). https://doi.org/10.1109/mdm.2014.17

  30. Ramanathan, R., Hain, R.: An ad hoc wireless testbed for scalable, adaptive QoS support. In: 2000 IEEE Wireless Communications and Networking Conference 2000, WCNC, vol. 3, pp. 998–1002 (2000). https://doi.org/10.1109/wcnc.2000.904763

  31. Ritter, H., Tian, M., Voigt, T., Schiller, J.: A highly flexible testbed for studies of ad-hoc network behaviour. In: 28th Annual IEEE International Conference on Local Computer Networks 2003, LCN 2003, Proceedings, pp. 746–752 (2003). https://doi.org/10.1109/lcn.2003.1243208

  32. Ikeda, M., Kulla, E., Hiyama, M., Barolli, L., Takizawa, M., Miho, R.: A comparison study between simulation and experimental results for MANETs. In: 2010 13th International Conference on Network-Based Information Systems (NBiS), pp. 371–378 (2010). https://doi.org/10.1109/nbis.2010.75

  33. Ikeda, M., Barolli, L., Hiyama, M., Kulla, E., Takizawa, M.: Performance evaluation of MANET routing protocols: simulations and experiments. Comput. Inform. 30(6), 1147–1165 (2011)

    Google Scholar 

  34. Hiyama, M., Kulla, E., Oda, T., Ikeda, M., Barolli, L.: Experimental results of a MANET testbed in a mixed environment considering horizontal and vertical topologies. In: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (AINA), pp. 884–889 (2012). https://doi.org/10.1109/aina.2012.68

  35. Hiyama, M., Kulla, E., Ikeda, M., Barolli, L.: Evaluation of MANET protocols for different indoor environments: results from a real MANET testbed. Int. J. Space-Based Situated Comput. 2(2), 71–82 (2012). https://doi.org/10.1504/ijssc.2012.047465. http://www.inderscienceonline.com/doi/abs/10.1504/IJSSC.2012.047465

  36. Kulla, E., Ikeda, M., Oda, T., Barolli, L., Xhafa, F., Takizawa, M.: Multimedia transmissions over a MANET testbed: problems and issues. In: 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 141–147 (2012). https://doi.org/10.1109/cisis.2012.82

  37. Kulla, E., Sakamoto, S., Ikeda, M., Barolli, L., Xhafa, F., Kamo, B.: Evaluation of a MANET testbed for central bridge and V-shape bridge scenarios using BATMAN routing protocol. In: 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 199–205 (2013). https://doi.org/10.1109/bwcca.2013.21

  38. Alenazi, M.J.F., Çetinkaya, E.K., Rohrer, J.P.: Implementation of the AeroRP and AeroNP protocols in Python. In: International Telemetering Conference Proceedings (2012). http://arizona.openrepository.com/arizona/handle/10150/581658

  39. Johnson, D., Stack, T., Fish, R., Flickinger, D., Ricci, R., Lepreau, J.: TrueMobile: a mobile robotic wireless and sensor network testbed. In: The 25th Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE Computer Society (2006)

    Google Scholar 

  40. De, P., Raniwala, A., Sharma, S., Chiueh, T.: MiNT: a miniaturized network testbed for mobile wireless research. In: Proceedings IEEE INFOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2731–2742 (2005). https://doi.org/10.1109/infcom.2005.1498556

  41. De, P., et al.: MiNT-m: an autonomous mobile wireless experimentation platform. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services, MobiSys 2006, pp. 124–137. ACM, New York (2006). https://doi.org/10.1145/1134680.1134694. http://doi.acm.org/10.1145/1134680.1134694

  42. De, P.: MiNT: a reconfigurable mobile multi-hop wireless network testbed. Ph.D. thesis, State University of New York at Stony Brook, Stony Brook, NY, USA (2007)

    Google Scholar 

  43. Stovall, D., Paine, N., Petz, A., Enderle, J., Julien, C., Vishwanath, S.: Pharos: an application-oriented testbed for heterogeneous wireless networking environments. Technical report TR-UTEDGE-2009-006, The University of Texas at Austin (2009)

    Google Scholar 

  44. Fok, C., Petz, A., Stovall, D., Paine, N., Julien, C., Vishwanath, S.: Pharos: a testbed for mobile cyber-physical systems. Technical report TR-ARiSE2011-001, University of Texas at Austin (2011)

    Google Scholar 

  45. Muchtar, F., Abdullah, A.H., Arshad, M.M., Wahab, M.H.A., Ahmmad, S.N.Z., Abdul-Salaam, G.: A critical review of MANET testbed using mobile robot technology. J. Phys. Conf. Ser. 1019(1), 012046 (2018). https://doi.org/10.1088/1742-6596/1019/1/012046. http://stacks.iop.org/1742-6596/1019/i=1/a=012046

  46. Muchtar, F., Abdullah, A.H., Lati, M.S.A., Hassan, S., Wahab, M.H.A., Abdul-Salaam, G.: A technical review of MANET testbed using mobile robot technology. J. Phys. Conf. Ser. 1049(1), 012001 (2018). https://doi.org/10.1088/1742-6596/1049/1/012001. http://stacks.iop.org/1742-6596/1049/i=1/a=012001

  47. Muchtar, F., Abdullah, A.H., Wahab, M.H.A., Ambar, R., Hana, H.F., Ahmmad, S.N.Z.: Mobile ad hoc network testbed using mobile robot technology. J. Phys. Conf. Ser. 1019(1), 012047 (2018). https://doi.org/10.1088/1742-6596/1019/1/012047. http://stacks.iop.org/1742-6596/1019/i=1/a=012047

  48. Su, Y., Gross, T.: Validation of a miniaturized wireless network testbed. In: Proceedings of the Third ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WiNTECH 2008, pp. 25–32. ACM, New York (2008). https://doi.org/10.1145/1410077.1410084. http://doi.acm.org/10.1145/1410077.1410084

  49. Arora, A., Ertin, E., Ramnath, R., Nesterenko, M., Leal, W.: Kansei: a high-fidelity sensing testbed. IEEE Internet Comput. 10(2), 35–47 (2006). https://doi.org/10.1109/mic.2006.37

    Article  Google Scholar 

  50. Sridharan, M., et al.: From Kansei to KanseiGenie: architecture of federated, programmable wireless sensor fabrics. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 155–165. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17851-1_12. http://link.springer.com/chapter/10.1007/978-3-642-17851-1_12

    Chapter  Google Scholar 

  51. Sridharan, M., et al.: KanseiGenie: software infrastructure for resource management and programmability of wireless sensor network fabrics. In: Next-Generation Internet Architectures and Protocols. Cambridge University Press (2011). http://dx.doi.org/10.1017/CBO9780511920950.015

  52. Su, Y., Heule, M., Gross, T.: IvyNet: a testbed for multi-hop wireless network research. Technical report, Citeseer (2006). Citation Key: su2006ivynet

    Google Scholar 

  53. Sanchez, A., Elvira, S., de Castro, A., Glez-de Rivera, G., Ribalda, R., Garrido, J.: Low cost indoor ultrasonic positioning implemented in FPGA. In: 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 2709–2714 (2009). https://doi.org/10.1109/iecon.2009.5415427

  54. Hennes, D., Claes, D., Meeussen, W., Tuyls, K.: Multi-robot collision avoidance with localization uncertainty. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS 2012, pp. 147–154. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2012). http://dl.acm.org/citation.cfm?id=2343576.2343597

  55. Claes, D., Hennes, D., Tuyls, K., Meeussen, W.: Collision avoidance under bounded localization uncertainty. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1192–1198 (2012). https://doi.org/10.1109/iros.2012.6386125

  56. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19457-3_1

    Chapter  Google Scholar 

  57. Boren, J., Cousins, S.: Exponential growth of ROS [ROS topics]. IEEE Robot. Autom. Mag. 18(1), 19–20 (2011). https://doi.org/10.1109/mra.2010.940147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farkhana Muchtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muchtar, F. et al. (2020). ToMRobot 2.0: Real Mobility Mechanism in MANET Testbed Using Mobile Robot. In: Singh, P., Sood, S., Kumar, Y., Paprzycki, M., Pljonkin, A., Hong, WC. (eds) Futuristic Trends in Networks and Computing Technologies. FTNCT 2019. Communications in Computer and Information Science, vol 1206. Springer, Singapore. https://doi.org/10.1007/978-981-15-4451-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4451-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4450-7

  • Online ISBN: 978-981-15-4451-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics