Skip to main content

Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

Transcriptional regulators are highly dynamic modulator proteins that bind to the specific DNA targets. These achieve their regulatory effects via activators or promoters. Consequently, the gene transcription is either upregulated or downregulated. These are known to be an integral component of the cell signaling and signal transduction cascade. CodY is a DNA-binding protein that regulates the transcription of several genes involved in crucial cellular activities. Bacillus anthracis is a potent biowarfare agent. Within the bacterium, the CodY targets include genes involved in metabolism, amino acid biosynthesis and transport, nitrogen assimilation, motility, biofilm formation, sporulation, and virulence. Owing to the vitality of the CodY protein in its anthrax pathogenesis, it becomes pertinent to broaden our horizon on its structural and functional attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barua S, McKevitt M, DeGiusti K et al (2009) The mechanism of Bacillus anthracis intracellular germination requires multiple and highly diverse genetic loci. Infect Immun 77:23–31

    Article  CAS  PubMed  Google Scholar 

  • Beck-Sickinger AG, Mörl K (2006) Posttranslational modification of proteins. Expanding Nature’s Inventory. By Christopher T. Walsh. Angew Chemie Int Ed 45:1020–1020

    Article  CAS  Google Scholar 

  • Blaustein RO, Koehler TM, Collier RJ et al (1989) Anthrax toxin: channel-forming activity of protective antigen in planar phospholipid bilayers. Proc Natl Acad Sci U S A 86:2209–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  • Brennan RG, Matthews BW (1989) The helix-turn-helix DNA binding motif. J Biol Chem 264:22–25

    Article  Google Scholar 

  • Brossier F, Mock M (2001) Toxins of Bacillus anthracis. Toxicon 39:1747–1755

    Article  CAS  PubMed  Google Scholar 

  • Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417

    Article  CAS  PubMed  Google Scholar 

  • Château A, van Schaik W, Joseph P et al (2013) Identification of Cody targets in Bacillus anthracis by genome-wide in vitro binding analysis. J Bacteriol 195:1204–1213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chateau A, van Schaik W, Six A et al (2011) CodY regulation is required for full virulence and heme iron acquisition in Bacillus anthracis. FASEB J 25:4445–4456

    Article  CAS  PubMed  Google Scholar 

  • Chesmore KN, Bartlett J, Cheng C et al (2016) Complex patterns of association between pleiotropy and transcription factor evolution. Genome Biol Evol 8:3159–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl E, Koseki H, Balling R (1997) Pax genes and organogenesis. BioEssays 19:755–765

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Koehler TM (1997) Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects atxA synthesis. Infect Immun 65:2576–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Sirard JC, Mock M et al (1995) The atxA gene product activates transcription of the anthrax toxin genes and is essential for virulence. Mol Microbiol 16:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens PL, Tournier JN (2015) Crossing of the epithelial barriers by Bacillus anthracis: the known and the unknown. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01122

  • Gopalani M, Dhiman A, Rahi A et al (2016) Overexpression of the pleiotropic regulator CodY decreases sporulation, attachment and pellicle formation in Bacillus anthracis. Biochem Biophys Res Commun 469:672–678

    Article  CAS  PubMed  Google Scholar 

  • Gordon VM, Leppla SH, Hewlett EL (1988) Inhibitors of receptor-mediated endocytosis block the entry of Bacillus anthracis adenylate cyclase toxin but not that of Bordetella pertussis adenylate cyclase toxin. Infect Immun 56:1066–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller M, Hoffmann U, Schanding T et al (1997) Nucleotide hydrolysis-dependent conformational changes in p21(ras) as studied using ESR spectroscopy. J Biol Chem 272:30103–30107

    Article  CAS  PubMed  Google Scholar 

  • Han AR, Kang HR, Son J et al (2016) The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism. Nucleic Acids Res 44:9483–9493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handke LD, Shivers RP, Sonenshein AL (2008) Interaction of Bacillus subtilis CodY with GTP. J Bacteriol 190:798–806

    Article  CAS  PubMed  Google Scholar 

  • Hendriksen WT, Bootsma HJ, Estevão S et al (2008) CodY of Streptococcus pneumoniae: link between nutritional gene regulation and colonization. J Bacteriol 190:590–601

    Article  CAS  PubMed  Google Scholar 

  • Hoffmaster AR, Koehler TM (1999) Control of virulence gene expression in Bacillus anthracis. J Appl Microbiol 87:279–281

    Article  CAS  PubMed  Google Scholar 

  • Hottes AK, Freddolino PL, Khare A et al (2013) Bacterial adaptation through loss of function. PLoS Genet 9:e1003617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson MJ, Beyer W, Böhm R et al (2008) Bacillus anthracis: balancing innocent research with dual-use potential. Int J Med Microbiol 298:345–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Inaoka T, Takahashi K, Ohnishi-Kameyama M et al (2003) Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem 278:2169–2176

    Article  CAS  PubMed  Google Scholar 

  • Joon S, Gopalani M, Rahi A et al (2017) Biochemical characterization of the GTP-sensing protein, CodY of Bacillus anthracis. Pathog Dis 75:1–9

    Article  CAS  Google Scholar 

  • Joseph P, Ratnayake-Lecamwasam M, Sonenshein AL (2005) A region of Bacillus subtilis CodY protein required for interaction with DNA. J Bacteriol 187:4127–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SK, Jung KH, Chai YG (2016) Changes in Bacillus anthracis CodY regulation under host-specific environmental factor deprived conditions. BMC Genomics 17:645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klimpel KR, Molloy SS, Thomas G et al (1992) Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A 89:10277–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler TM (2002) Bacillus anthracis genetics and virul\ence gene regulation. Curr Top Microbiol Immunol 271:143–164

    CAS  PubMed  Google Scholar 

  • Koehler TM (2009) Bacillus anthracis physiology and genetics. Mol Asp Med 30:386–396

    Article  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  • Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Lemos JA, Nascimento MM, Lin VK, Abranches J, Burne RA (2008) Global regulation by (p)ppGpp and CodY in Streptococcus mutans. J Bacteriol 190:5291–5299

    Google Scholar 

  • Leppla S, Arora N, Varughese M (1999) Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 87:284

    Article  CAS  PubMed  Google Scholar 

  • Lopez JM, Marks CL, Freese E (1979) The decrease of guanine nucleotides initiates sporulation of Bacillus subtilis. BBA – Gen Subject 587:238–252

    Article  CAS  Google Scholar 

  • Lowe DE, Glomski IJ (2012) Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majerczyk CD, Dunman PM, Luong TT et al (2010) Direct targets of CodY in Staphylococcus aureus. J Bacteriol 192:2861–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  PubMed  Google Scholar 

  • Martinez SE, Beavo JA, Hol WGJ (2002) GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. Mol Interv 2:317–323

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Collier RJ (1993) pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol 10:647–653

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Furlong D, Hanna PC et al (1994) Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 269:20607–20612

    Article  CAS  PubMed  Google Scholar 

  • Mitani T, Heinze JE, Freese E (1977) Induction of sporulation in Bacillus subtilis by decoyinine or hadacidin. Biochem Biophys Res Commun 77:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  PubMed  Google Scholar 

  • Molle V, Fujita M, Jensen ST et al (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G et al (2000) Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit SB, Srinivasan N (2003) Survey for G-proteins in the prokaryotic genomes: prediction of functional roles based on classification. Proteins Struct Funct Genet 52:585–597

    Article  CAS  PubMed  Google Scholar 

  • Petranovic D, Guedon E, Sperandio B et al (2004) Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transaction regulator. Mol Microbiol 53:613–621

    Article  CAS  PubMed  Google Scholar 

  • Pilotelle-Bunner A, Cornelius F, Sebban P et al (2009) Mechanism of Mg2+ binding in the Na+, K+-ATPase. Biophys J 96:3753–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskacek S, Gregor M, Nemethova M et al (2007) Nine-amino-acid transactivation domain: establishment and prediction utilities. Genomics 89:756–768

    Article  CAS  PubMed  Google Scholar 

  • Ratnayake-Lecamwasam M, Serror P, Wong KW et al (2001) Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev 15:1093–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AR, Somerville GA, Sonenshein AL (2015) Regulating the intersection of metabolism and pathogenesis in gram-positive bacteria. Microbiol Spectr 3:1–27

    CAS  Google Scholar 

  • Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack FJ, Mueller JP, Sonenshein AL (1993) Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. J Bacteriol 175:4605–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenz L, Francois P, Whiteson K et al (2011) The CodY pleiotropic repressor controls virulence in gram-positive pathogens. FEMS Immunol Med Microbiol 62:123–139

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    Article  CAS  PubMed  Google Scholar 

  • Tu Quoc PH, Genevaux P, Pajunen M et al (2007) Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • van Hijum SAFT, Medema MH, Kuipers OP (2009) Mechanisms and evolution of control logic in prokaryotic transcriptional regulation. Microbiol Mol Biol Rev 73:481–509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Schaik W, Château A, Dillies M-A et al (2009) The global regulator CodY regulates toxin gene expression in Bacillus anthracis and is required for full virulence. Infect Immun 77:4437–4445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villapakkam AC, Handke LD, Belitsky BR et al (2009) Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids. J Bacteriol 191:6865–6876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson C, Myakishev M, Acharya A et al (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wärnmark A, Treuter E, Wright APH et al (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 17:1901–1909

    Article  PubMed  CAS  Google Scholar 

  • Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein–DNA interaction modes. J Mol Biol 262:294–313

    Article  CAS  PubMed  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang Y, Wang ZX et al (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of rho family GTP-binding proteins. J Biol Chem 275:25299–25307

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Bhatnagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joon, S., Bhatnagar, S., Bhatnagar, R. (2021). Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_17

Download citation

Publish with us

Policies and ethics