Skip to main content

Iron Chlorosis in Peach and Its Eco-Friendly Management: An Outlook

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 633 Accesses

Abstract

Peach [Prunus persica (L.) Batsch] suffers from iron chlorosis when grown in calcareous soils due to low iron availability. Traditionally, foliar and soil application of ferrous sulfate, Fe-EDTA, Fe-EDDHA chelates, etc. are adopted as corrective measures of chlorosis. Nano-fertilizer, bioremediation, and transgenic breeding approaches open innovative line of chlorosis correction. The chapter is structured to prepare a summary of the iron chlorosis: causes, detection techniques, management approaches, and future line of research. Iron fixation in calcareous soil, iron uptake by plant, advance detection techniques, and correction measures of chlorosis were explored. The significance of bioremediation and nano-fertilizers is also identified. Microbe-mediated correction measures and nano-fertilizer application are some of the eco-friendly options. Though, further research is needed in microbe-mediated correction measures and nano-fertilizer application, there is a line of research to develop Fe defficiency tolerant rootstocks through transgenic approach. These techniques will be quite useful in lowering the dependency on synthetic chemical and make better eco-friendly options for management of chlorosis in peach, as long-term solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadía J, Álvarez-Fernández A, Morales F, Sanz M, & Abadía A (2001) Correction of iron chlorosis by foliar sprays. In International Symposium on Foliar Nutrition of Perennial Fruit Plants 594, pp. 115–121

    Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of γFe 2 O 3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35(12):3365–3375

    CAS  Google Scholar 

  • Álvarez-Fernández A, Garcıa-Marco S, Lucena JJ (2005) Evaluation of synthetic iron (III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis. Eur J Agron 22(2):119–130

    Google Scholar 

  • Balk J, Pilon M (2011) Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends Plant Sci 16(4):218–226

    CAS  PubMed  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153

    CAS  PubMed  Google Scholar 

  • Bozorgi HR (2012) Effects of foliar spraying with marine plant Ascophyllum nodosum extract and nano iron chelate fertilizer on fruit yield and several attributes of eggplant (Solanum melongena L.). J Agric Biol Sci 7(5):357–362

    Google Scholar 

  • Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10(3):276–282

    CAS  PubMed  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20(1):33–40

    CAS  PubMed  Google Scholar 

  • Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2(5):187–193

    Google Scholar 

  • Brown JC (1956) Iron chlorosis. Annu Rev Plant Physiol 7(1):171–190

    CAS  Google Scholar 

  • Chhipa H (2019) Mycosynthesis of nanoparticles for smart agricultural practice: a green and eco-friendly approach. In Green synthesis, characterization and applications of nanoparticles. Elsevier, p 87–109

    Google Scholar 

  • Christ RA (1974) Iron requirement and iron uptake from various iron compounds by different plant species. Plant Physiol 54(4):582–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corredor E, Risueño MC, Testillano PS (2010) Carbon-iron magnetic nanoparticles for agronomic use in plants: promising but still a long way to go. Plant Signal Behav 5(10):1295–1297

    PubMed  PubMed Central  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9(1):45

    PubMed  PubMed Central  Google Scholar 

  • Crisosto CH, Mitchell FG, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34(6):1116–1118

    Google Scholar 

  • Crowley DE, Reid CP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87(3):680–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. In: Iron nutrition and interactions in plants. Springer, Dordrecht, pp 213–232

    Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54(1):183–206

    CAS  PubMed  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer-Verlag, Berlin, pp 1–42

    Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3(1):e1

    Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144(1):197–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Jendoubi H, Igartua E, Abadía J, Abadía A (2012) Prognosis of iron chlorosis in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees using bud, flower and leaf mineral concentrations. Plant Soil 354(1–2):121–139

    CAS  Google Scholar 

  • FAOSTAT (2017). Retrieved from http://faostat.fao.org/site/339/default.aspx

  • García-Laviña P, Álvarez-Fernández A, Abadía J, & Abadía A (2001) Foliar applications of acids with and without FeSO4 to control iron chlorosis in pear. In International Symposium on Foliar Nutrition of Perennial Fruit Plants 594, p 217–222

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    CAS  PubMed  Google Scholar 

  • Goenaga R, Ayala T, Quiles A (2013) Yield performance of cowpea plant introductions grown in calcareous soils. HortTechnology 23(2):247–251

    CAS  Google Scholar 

  • Gogorcena Y, Abadía J, Abadía A (2005) A new technique for screening iron-efficient genotypes in peach rootstocks: elicitation of root ferric chelate reductase by manipulation of external iron concentrations. J Plant Nutr 27(10):1701–1715

    Google Scholar 

  • Gonzalo MJ, Moreno MÁ, Gogorcena Y (2011) Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. J Plant Physiol 168(9):887–893

    CAS  PubMed  Google Scholar 

  • Guerinot ML (2001) Improving rice yields—ironing out the details

    Google Scholar 

  • Hammerschlag FA, McCanna IJ, & Smigocki AC (1996) Characterization of transgenic peach plants containing a cytokinin biosynthesis gene. In III International Symposium on In Vitro Culture and Horticultural Breeding 447, p 569–574

    Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216(4):541–551

    CAS  PubMed  Google Scholar 

  • Hergert GW, Nielsen RA, Schild JA, Hawley RL, Darapuneni MK (2019) Row-applied iron chelate for correcting iron deficiency chlorosis in dry bean. Agron J 111(1):362–367

    CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  PubMed  Google Scholar 

  • Jacobson L (1945) Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll content. Plant Physiol 20(2):233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176(6):709–714

    CAS  Google Scholar 

  • Jiménez S, Pinochet J, Abadía A, Moreno MÁ, Gogorcena Y (2008) Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience 43(2):304–309

    Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2013) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113(1):7–18

    PubMed  PubMed Central  Google Scholar 

  • Jones JB Jr (1983) Soil testing and plant analysis: guides to the fertilization of horticultural crops. Hortic Rev 7:1–68

    Google Scholar 

  • Kaya C, Ashraf M (2019) The mechanism of hydrogen sulfide mitigation of iron deficiency-induced chlorosis in strawberry (Fragaria× ananassa) plants. Protoplasma 256(2):371–382

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320

    CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46

    CAS  Google Scholar 

  • Kukde S, Sarangi BK, & Purohit H (2019) Antioxidant role of nanoparticles for enhancing ecological performance of plant system. Engineered Nanomaterials and Phytonanotechnology: Challenges for Plant Sustainability, 87, 159

    Google Scholar 

  • Li B, Liew OW, Asundi AK (2006) Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. J Photochem Photobiol B Biol 85(2):131–139

    CAS  Google Scholar 

  • Li H, Wang L, Yang ZM (2015) Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency. Gene 554(1):16–24

    CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Miehé JA (1997) Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci 2(8):316–320

    Google Scholar 

  • Loeppert RH (1986) Reactions of iron and carbonates in calcareous soils. J Plant Nutr 9(3–7):195–214

    CAS  Google Scholar 

  • Longnecker N, Welch RM (1990) Accumulation of apoplastic iron in plant roots: a factor in the resistance of soybeans to iron-deficiency induced chlorosis? Plant Physiol 92(1):17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucena C, Romera FJ, García MJ, Alcántara E, Pérez-Vicente R (2015) Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice. Front Plant Sci 6:1056

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Zhang M, Liu Z, Chen H, Li YC, Sun Y, Ma Q, Zhao C (2019) Effects of foliar application of the mixture of copper and chelated iron on the yield, quality, photosynthesis, and microelement concentration of table grape (Vitis vinifera L.). Sci Hortic 254:106–115

    CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic press

    Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165(2):261–274

    CAS  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9(3–7):695–713

    CAS  Google Scholar 

  • Marsh HV Jr, Evans HJ, Matrone G (1963) Investigations of the role of iron in chlorophyll metabolism I. effect of iron deficiency on chlorophyll and heme content and on the activities of certain enzymes in leaves. Plant Physiol 38(6):632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mary V, Ramos MS, Gillet C, Socha AL, Giraudat J, Agorio A et al (2015) Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 double mutant. Plant Physiol 169(1):748–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masse E, Salvail H, Desnoyers G, Arguin M (2007) Small RNAs controlling iron metabolism. Curr Opin Microbiol 10(2):140–145

    CAS  PubMed  Google Scholar 

  • Meyer JA, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology 107(2):319–328

    CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monge E, Perez C, Pequerul A, Madero P, Val J (1993) Effect of iron chlorosis on mineral nutrition and lipid composition of thylakoid biomembrane in Prunus persica (L.) Bastch. In: Optimization of plant nutrition. Springer, Dordrecht, pp 477–482

    Google Scholar 

  • Morales F, Cerovic ZG, Moya I (1994) Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency. Plant Physiol 106(1):127–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortvedt JJ (1991) Correcting iron deficiencies in annual and perennial plants: present technologies and future prospects. Plant Soil 130(1–2):273–279

    CAS  Google Scholar 

  • Naafi TN, Rahayu YS (2019) The effect of local micro organism and Mycorrhizal fungi on anatomical and morphological responses of red chili (Capsicum annuum L.) at different soil water level. J Phys Conf Ser 1417(1):012036. IOP Publishing

    CAS  Google Scholar 

  • Nishio JN, Taylor SE, Terry N (1985) Changes in thylakoid galactolipids and proteins during iron nutrition-mediated chloroplast development. Plant Physiol 77(3):705–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio JN, Terry N (1983) Iron nutrition-mediated chloroplast development. Plant Physiol 71(3):688–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niyigaba E, Twizerimana A, Mugenzi I, Ngnadong WA, Ye YP, Wu BM, Hai JB (2019) Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy 9(5):250

    CAS  Google Scholar 

  • Nogiya M, Pandey RN, Singh B, Singh G, Meena MC, Datta SC, Pradhan S, Meena AL (2019) Responses of aerobically grown iron chlorosis tolerant and susceptible rice (Oryza sativa L.) genotypes to soil iron management in an Inceptisol. Arch Agron Soil Sci 65(10):1387–1400

    CAS  Google Scholar 

  • Omidvari M, Sharifi RA, Ahmadzadeh M, Dahaji PA (2010) Role of fluorescent pseudomonads siderophore to increase bean growth factors. J Agric Sci 2(3):242

    Google Scholar 

  • Oserkowsky J (1933) Quantitative relation between chlorophyll and iron in green and chlorotic pear leaves. Plant Physiol 8(3):449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla IM, Golis A, Gentile A, Damiano C, Scorza R (2006) Evaluation of transformation in peach Prunus persica explants using green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes. Plant Cell Tissue Organ Cult 84(3):309–314

    CAS  Google Scholar 

  • Pal V, Singh G, Dhaliwal SS (2019) Yield enhancement and biofortification of chickpea (Cicer arietinum L.) grain with iron and zinc through foliar application of ferrous sulfate and urea. J Plant Nutr 42(15):1789–1802

    CAS  Google Scholar 

  • Pérez-Clemente RM, Pérez-Sanjuán A, García-Férriz L, Beltrán JP, Cañas LA (2005) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol Breed 14(4):419–427

    Google Scholar 

  • Pestana M, de Varennes A, Faria EA (2003) Diagnosis and correction of iron chlorosis in fruit trees: a review. J Food Agric Environ 1:46–51

    Google Scholar 

  • Pich A, Scholz G (1996) Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J Exp Bot 47(1):41–47

    CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017b) Nanotechnology: an agriculture paradigm. Springer Nature Singapore Pte Ltd.. (ISBN: 978-981-10-4573-8)

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    CAS  Google Scholar 

  • Radzki W, Mañero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravi RK, Anusuya S, Balachandar M, Muthukumar T (2019) Microbial interactions in soil formation and nutrient cycling. In: Mycorrhizosphere and pedogenesis. Springer, Singapore, pp 363–382

    Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70(2):231–234

    Google Scholar 

  • Sanz M, Belkhodja R, Toselli M, Montañés L, Abadía A, Tagliavini M, … & Abadía J (1996) Floral analysis as a possible tool for the prognosis of iron deficiency in peach. In: III International Symposium on Mineral Nutrition of Deciduous Fruit Trees 448. p 241–246

    Google Scholar 

  • Sanz M, Pascual J, Machín J (1997) Prognosis and correction of iron chlorosis in peach trees: influence on fruit quality. J Plant Nutr 20(11):1567–1572

    CAS  Google Scholar 

  • Sauz M, Heras L, Montañés L (1992) Relationships between yield and leaf nutrient contents in peach trees: early nutritional status diagnosis. J Plant Nutr 15(9):1457–1466

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    CAS  PubMed  Google Scholar 

  • Schmidke I, Krüger C, Frömmichen R, Scholz G, Stephan UW (1999) Phloem loading and transport characteristics of iron in interaction with plant-endogenous ligands in castor bean seedlings. Physiol Plant 106(1):82–89

    CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31

    PubMed  PubMed Central  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92

    Google Scholar 

  • Sharma S, Malhotra H, Borah P, Meena MK, Bindraban P, Chandra S, Pandey V, Pandey R (2019) Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean. Plant Physiol Rep 24(1):119–128

    CAS  Google Scholar 

  • Singh P, Singh RK, Singh MP, Song QQ, Solanki MK, Yang LT, Li YR (2019) Soil: microbial cell factory for assortment with beneficial role in agriculture. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 63–92

    Google Scholar 

  • Smigocki AC, Hammerschlag FA (1991) Regeneration of plants from peach embryo cells infected with a shooty mutant strain of agrobacterium. J Am Soc Hortic Sci 116(6):1092–1097

    Google Scholar 

  • Smith BR, Fisher PR, Argo WR (2004) Growth and pigment content of container-grown impatiens and petunia in relation to root substrate pH and applied micronutrient concentration. HortScience 39(6):1421–1425

    CAS  Google Scholar 

  • Somers II, Gilbert SG, Shive JW (1942) The iron-manganese ratio in relation to the respiratory CO2 and deficiency-toxicity symptoms in soybeans. Plant Physiol 17(2):317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliavini M, Abadía J, Rombolà AD, Abadía A, Tsipouridis C, Marangoni B (2000) Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J Plant Nutr 23(11–12):2007–2022

    CAS  Google Scholar 

  • Tan X, Yang X, Xie Y, Xiao H, Liu M, Wu L (2019) Effects of different foliar iron applications on activity of ferric chelate reductase and concentration of iron in sweet potato (Ipomoea batatas). Crop Pasture Sci 70(4):359–366

    CAS  Google Scholar 

  • Taylor SE, Terry N, Huston RP (1982) Limiting factors in photosynthesis: III. Effects of iron nutrition on the activities of three regulatory enzymes of photosynthetic carbon metabolism. Plant Physiol 70(5):1541–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry N (1980) Limiting factors in photosynthesis: I. use of iron stress to control photochemical capacity in vivo. Plant Physiol 65(1):114–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terry N (1983) Limiting factors in photosynthesis: IV. Iron stress-mediated changes in light-harvesting and electron transport capacity and its effects on photosynthesis in vivo. Plant Physiol 71(4):855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Guo N, Dang Z, Ren Q, Shen H (2018) In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.). IET Nanobiotechnol 12(7):987–993

    PubMed  PubMed Central  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M et al (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347(2):123–129

    CAS  PubMed  Google Scholar 

  • Wang W, Qiu Z, Tan H, Cao L (2014) Siderophore production by actinobacteria. Biometals 27(4):623–631

    CAS  PubMed  Google Scholar 

  • Ye X, Brown SK, Scorza R, Cordts J, Sanford JC (1994) Genetic transformation of peach tissues by particle bombardment. J Am Soc Hortic Sci 119(2):367–373

    CAS  Google Scholar 

  • Yearbook FS (2013) World food and agriculture. Food and Agriculture Organization of The United Nations, Rome, Part 3, Feeding the world

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K., Singh, R., Tomer, A. (2021). Iron Chlorosis in Peach and Its Eco-Friendly Management: An Outlook. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_12

Download citation

Publish with us

Policies and ethics