Skip to main content

Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security

  • Chapter
  • First Online:
Recent Developments in Microbial Technologies

Abstract

The impact of increasing human population, rising food demand, and adverse effects of climate change, viz., changing rainfall pattern, rising temperature, biotic-abiotic stresses, etc., has tremendously affected global food security. In addition, increased anthropogenic inputs from urbanization, industrialization, as well as outrageous use of chemical fertilizers and pesticides have posed a severe threat to the sustainability of the agroecosystems. For many decades, the use of chemical pesticides against insect and microbial pests has become an integrative part of agriculture and contributed significantly to the crop improvement. But, their long-term persistence, cytotoxicity, and microbial resistance have resulted negative impact on the biosphere, thus creating pollution of diverse ecosystems, land degradation, and biodiversity losses. For the last two decades, alternate pest management strategies have become the new avenues for controlling pest and diseases in a greener, safer, and eco-friendly manner. The use of biological control agents (termed as biocides) such as both microbe- and plant-based formulations has been known to be the major emerging tool in crop disease/pest management and appealing alternative to the chemical pesticide in sustainable agriculture. Biopesticides employ the use of naturally occurring substances, i.e., living organisms (natural enemies) or their products (phytochemicals, microbial products) or by-products (semiochemicals) that control pests by nontoxic mechanisms, with high targeted activity against causal agents (insects, fungi, weeds, viruses, nematodes, etc.), and nonpersistence in the environment. The use of biopesticide alone or in combination with agrochemicals has become the new tool in crop protection as a part of biointensive integrated pest management (IPM) strategies. Although biopesticides are slowly substituting the chemical pesticides with great promise, its use to the desired extent is lacking; hence insight on such biological agents is a prerequisite. In this chapter, we have summarized the sources of biopesticides, their plant protective mechanisms (mode of action), availability, and status in India, as well as some critical pros and cons of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aquccl MA, Leather SR (2013) Virulence of Verticillium lecanii (Z.) against cereal aphids: does timing of infection affect the performance of parasitoids and predators'? Pest Manag Sci 69:493–498

    Google Scholar 

  • Arencibia A, Vasquez RI, Prieto D, Tcllcz P, Cannina ER, Cacgo A, Hernandez L, Dc la Rica GA, Selman-Housein CS (1997) Transgenic sugarcane plants resistant to stem borer. Mol Breed 3:247–255

    Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35(2):550–557

    Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian J Microbiol 36(9):591–608

    CAS  Google Scholar 

  • Beas-Catena A, Sanchez-Miron A, García-Camacho F, Contreras-Gómez A, Molina-Grima E (2014) Baculovirus Biopesticides: An Overview. J Ani Plant Sci 24(2):362–373

    Google Scholar 

  • Berliner E (1915) On the sleepiness of Ephestia kuehniella and Bac. thuringiensis. Sp. Z. Angew Loma 2:21–56

    Google Scholar 

  • Brown LR (1996) Tough choices—being the challenge of thud security. Earthscan Publications Ltd., London, UK

    Google Scholar 

  • Burger HD (1981) Safety testing and quality control of microbial pesticides. In: Barges MD (ed) Microbial control of pests and plant diseases 1970–1980. Academic Press, Elsevier, Amsterdam, Netherlands, pp 737–767

    Google Scholar 

  • Butt TM, Jackson C, Mogan N (2001) Introduction fungal biological bin-control agents: progress, problems and potential. In: Butt T, Jackson C, Magan N (eds) Fungi as Bioconcrol agents: Progress, emblems and potential. CAB International, Wallingford, UK, pp 1–8

    Google Scholar 

  • Caballero P, Vargas-Osuna E, Santiago-Alvarez C (1991) Parasitization of granulosis-virus infected and noninfected Agrotis segetum larvae and the virus transmission by three hymenopteran parasitoids. Entomologia experimentalis et apphcate 8(1):55–60

    Google Scholar 

  • Carruthers R, Soper RS (1987) Fungal diseases. In: Fuca IR, Tanada Y (eds) Epizootiology of insect diseases. John Wiley and Sons, New York, USA

    Google Scholar 

  • Chiticowski RL, Tumipseed SG, Sullivan MJ, Bridges JWC (2003) Field and laboratory evaluations of transgenic cotton expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Ecom Entoseol 96(3):755–762

    Google Scholar 

  • Chen ZX, Chen SY, Dickson DW (2004) Nematology: advances and perspectives, vol II: nematode management and utilization. CABI, Wallingford

    Google Scholar 

  • Cho EM, Boucias D, Keyhani NO (2006) EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiol 152:2855–2864

    CAS  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloido gyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Google Scholar 

  • Cramer HH (1967) Plant protection and world crop production. Bayer Pflanzenschutz Nachrichten 20:1–524

    Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniel H (2001) Over expression of the B. thuringiensis Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotech 19:71–74

    Google Scholar 

  • Delannay X, La Vallee BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Morrone PG, Dodson RB, Augustine JJ, Layton JG, Fisehhoff DA (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Biotech 7:1265–1269

    Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Eco 74:1–7

    Google Scholar 

  • Dhaliwal GS, Jindal V, Mohindru B (2015) Crop losses due to insect pests: global and Indian scenario. Indian J Eco 77:165–168

    Google Scholar 

  • Dickler E (1991) Tortricid pests of pome and stone fruits, Eurasian species. In: van der Geese LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control. Elsevier Science Publishers B. V, New York, pp 435–452

    Google Scholar 

  • Douches DS, Westedi AL, Zarka K, Schroeter B (1998) Potato transformation to combine natural and engineered resistance for controlling tuber moth. Hort Sci 33:1053–1056

    CAS  Google Scholar 

  • Dougherty EM, Narang N, Loeb M, Lynn DE, Shapiro M (2006) Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Sci Tech 16:157–168

    Google Scholar 

  • Dutta S (2015) Biopesticides: an eco-friendly approach for Pest control. World J Pharm Pharm Sci 4(6):250–265

    Google Scholar 

  • Erlandson ME (2008) Insect pest control by viruses. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn. Academic Press, Elsevier, Amsterdam, Netherlands, pp 125–133

    Google Scholar 

  • Escribano A, Williams T, Goulson D, Cave RD, Chapman JW, Caballero P (1999) Selection of a nucleopolyhedrovirus for control of Spodoptera frugiperda (Lepidoptera: Noctuidae): structural, genetic, and biological comparison of four isolates from the Americas. J Econ Entomol 92:1079–1085

    CAS  PubMed  Google Scholar 

  • Glare TR, O’Callaghan M (2003) Environmental impacts of bacterial biopesticides. In: Hokkanen HMT, Hajek A (eds) Environmental impacts of microbial insecticides: need and methods for risk assessment. Springer, Netherlands, pp 119–149

    Google Scholar 

  • Glare TR, O'Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. John Wiley and Sons, Chichester, UK, p 368

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Sci 327:812–818

    CAS  Google Scholar 

  • Goettel MS, Eilenberg J, Glare T (2005) Entomopathogenic Fungi and their role in regulation of insect populations. In: Gilbert LI, Gill SS (eds) Insect control biological and synthetic agents, In series of comprehensive molecular insect science, vol 6. Academic Press, Elsevier, Amsterdam, Netherlands, pp 387–431

    Google Scholar 

  • Gomez I, Sanchez J, Miranda R, Bravo A, Soberon M (2002) Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lette 513(2–3):242–246

    CAS  Google Scholar 

  • Gupta S, Dikshit AK (2010) Bin-pesticides: au eco-friendly approach for pest control. J Biopest 3(1 Special Issue):186–188

    Google Scholar 

  • Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30:285–292

    Google Scholar 

  • Hoffmann MP, Frodsham AC (1993) Natural enemies of vegetable insect pests. Cooperative Extension, Cornell University, Ithaca, NY, p 63

    Google Scholar 

  • Hoffmann MP, Zalom FG, Wilson LT, Smilanick JM, Malyj LD, Iciser J, Hilder VA, Barnes WM (1992) Field evaluation of transgenic tobacco containing genes encoding bacillus thuringiensis d-endotoxin or cowpea trypsin inhibitor efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 85:2516–2522

    Google Scholar 

  • Inceoglu AB, Kamita SG, Hammock BD (2006) Genetically modified Baculoviruses: a historical overview and future outlook. Adv Virus Res 68:323–360

    CAS  PubMed  Google Scholar 

  • Ishiwata S (1901) On a new type of severe flacherie (sotto disease) (original in Japanese). Dainihon Sansi Kaiho 1901(114):1–5

    Google Scholar 

  • Jackson DM, Lynn DE, Fuss JR, Shepard BM, Shapiro M (2008) Efficacy of entomopathogenic viruses on pickleworm larvae and cell lines. J Agric Urban Entomol 25(2):81–97

    Google Scholar 

  • Jindal V, Dhaliwal GS, Koul O (2013) Pest management in 21st century: roadmap for future. Biopest Int 9(1):1–22

    Google Scholar 

  • Kalra A, Khanuja SPS (2007) Research and Development priorities for biopcsticidc and biofcrtiliser products for sustainable agriculture in India. In: Teng PS (ed) Business potential for agricultural biotechnology. Asian Productivity Organisation, Tokyo, pp 96–102

    Google Scholar 

  • Kamiya K, Zhu J, Murata M, Lavifia-Caoili BA, Ikeda M, Kobayashi M, Kawamura S (2004) Cloning and comparative characterization of three distinct nucleopolyhedroviruses isolated from the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) in Japan. Biol Control 31(1):38–48

    CAS  Google Scholar 

  • Kandpal V (2014) Biopesticides. Int J Envi Res Dev 4(2):191–196

    Google Scholar 

  • Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainabiliry in developing Asian countries. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):877–891

    CAS  Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect Pest management. Pharmacologia 1:641–656

    Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. CAB Reviews: Persp Agric Vete Sci Nut Nat Reso 6:1–26

    Google Scholar 

  • Koul O (2012) Plant biodiversity as a resource for natural products for insect Pest management. In: Gurr GM, Wratten SD, Snyder WE, Read DMY (eds) Biodiversity and insect pests: key issues for sustainable management. John Wiley & Sons, Ltd., UK, pp 85–105

    Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell M, Lawns K, Lewis K, Maddox D, McPherson K, Megliji MR, Merlin F, Rhodes R, Warren GW, Wright M, Fvola SV (1993) Field performance of elite maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotech 11:194–200

    CAS  Google Scholar 

  • Lacey LA, Siegel JP (2000) Safety and ecotoxicology of Entomopathogenic Bacteria. In: Charles J-F, Delécluse A, Roux CN-L (eds) Entomopathogenic Bacteria: from laboratory to field application. Springer, Dordrecht, pp 253–273

    Google Scholar 

  • Lasa R, Ruiz-Portero C, Aloazar MD, Belda JE, Caballero P, Williams T (2007) Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol Control 40:89–96

    CAS  Google Scholar 

  • Lecadet MM, Frachon E, Dumanoir VC, Ripouteau H, Hanson S, Laurent P, Thiery I (1999) Updating the H-antigen classification of bacillus thuringiensis. J Appl Microbiol 86:660–672

    CAS  PubMed  Google Scholar 

  • Madani M, Subbotin SA, Moens M (2005) Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Mol Cel Pro 19:81–86

    CAS  Google Scholar 

  • Magid S, Jogen CK, Ratul CR (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Tech 1(7):169–177

    Google Scholar 

  • Maleita CMN, Curtis RHC, Powers SJ, Abrantes I (2012) Host status of cultivated plants to Meloidogyne hispanica. Eur J Plant Pathol 133:449–460

    Google Scholar 

  • Mazid S, Rajkhowa CR, Kalita JC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Tech 1(7):169–177

    Google Scholar 

  • McCoy CW, Samson RA, Boucias DG (1988) Entomogenous fungi. In: Igrioffi CM, Mandcrva NB (eds) Handbook of natural pesticides, microbial insecticides, part a, In series of Entomogenous Protozoa and Fungi, vol 5. Mric Press, Boca Raton, Florida

    Google Scholar 

  • Mills NJ, Kean JM (2010) Behavioral studies, molecular approaches, and modelling: methodological contributions to biological control success. Biol Control 52(3):255–262

    Google Scholar 

  • Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332

    CAS  PubMed  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    CAS  PubMed  Google Scholar 

  • Mpandeli S, Maponya P (2014) Constraints and challenges facing the small scale farmers in Limpopo Province, South Africa. J Agric Sci 6(4):135–143

    Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DH, Cihabrial SA, Jarvis AW, Martelli GP, Mayo NA, Summers MD (1995) Virus taxonomy - the classification and nomenclature of princes: sixth report of the international committee on taxonomy of Viruses. Springer-Verlag, New York

    Google Scholar 

  • Nawaz M, Mabubu JI, Hua H (2016) Current status and advancement of biopesticides: microbial and botanical pesticides. J Entomol Zool Stu 4(2):241–246

    Google Scholar 

  • Norin T (2007) Semiochemicals for insect pest management. Pure Appl Chem 79(12):2129–2136

    CAS  Google Scholar 

  • OBPPD (Ombudsman, Biopesticides and Pollution Prevention Division) (2018) What are biopesticides. Office of Pesticide Programs, Environmental Protection Agency. https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides. Accessed 16 July 2018

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Okuno S, Takatsuka J, Nakai M, Ototake S, Masui A, Kunirni Y (2003) Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera hira (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biol Control 26:146–152

    Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market Nov and where Tt Ts going. Pest Manag 26(5):203–206

    Google Scholar 

  • Pandey RK, Prasad R, Mangunath VG, Goswami BK (2010) Biotechnology of biocontrol based biopesticides: core component of biological deterrents. In: Gupta VK, Tuohy M, Gaur RK (eds) Fungal biochemistry and biotechnology. LAP LAMBERT Academic Publishing AG & Co. KG, Saarbrücken, pp 214–244

    Google Scholar 

  • Parrott WA, All JN, Adang MJ, Bailey MA, Boerma HR, Stewart CN (1994) Recovery and evaluation of soybean (Glycine max [L.] Merr.) plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene. In Vitro Cell Dev Biol Plant 30:144–149

    Google Scholar 

  • Pavel R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and Farm products for protection against insects — a review. Plant Prot Sci 52(4):229–241

    Google Scholar 

  • Peferoen M (1992) Engineering of insect-resistant plants with bacillus thuringiensis crystal protein genes. In: Gatehouse AHR, Ililder VA, Bovher D (eds) Plant genetic manipulation for crop protection. CAB International, Wallingford, UK, pp 135–153

    Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YN, Petersen LJ, Parker GB, McPherson SA, Wyman J, Lova S, Rood G, Bicvcr D, Fischho DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22(2):313–321

    CAS  PubMed  Google Scholar 

  • Pilcher ECD, Rice ME, Obrycki JJ (2005) Impact of transgenic bacillus thuringiensis corn and crop phenology on Þve non-target arthropods. Env Entomol 34:1302–1316

    Google Scholar 

  • Possee RD, Barnett AL, Hawtin RE, King LA (1997) Engineered baculoviruses for pest control. Pestic Sci 51:462–470

    CAS  Google Scholar 

  • Qin L, Overmars H, Helder J, Popeijus H, van der Voort JR, Groenink W, van Koert P, Schots A, Bakker J, Smant G (2000) An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant-Microbe Interact 13(8):830–836

    CAS  PubMed  Google Scholar 

  • Rai D, Updhay V, Mehra P, Rana M, Pandey AK (2014) Potential of Entomopathogenic Fungi as biopesticides led. J Sci Res and Tech 2(5):7–13

    Google Scholar 

  • Raja N (2014) Botanicals: sources for eco-friendly biopesticides. J Biofertil Biopestici 5(1):e122

    Google Scholar 

  • Ravensberg WJ (ed) (2011a) A roadmap to the successful development and commercialization of microbial Pest control products for control of arthropods. Springer, Dordrecht, Netherlands, p 383

    Google Scholar 

  • Ravensberg WJ (2011b) Selection of a microbial Pest control agent. In: Ravensberg WJ (ed) A roadmap to the successful development and commercialization of microbial Pest control products for control of arthropods. Springer, Dordrecht, Netherlands, pp 23–57

    Google Scholar 

  • Regnault-Roger C (2012) Trends for commercialization of biocontrol agent (biopesticide) products. In: Merillon JH, Ramawat KG (eds) PION Defence: biological control. Springer, Dordrecht, The Netherland, pp 139–160

    Google Scholar 

  • Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Envi Microbiol 66:3515–3518

    CAS  Google Scholar 

  • Roberts DW (1981) Toxins of entomopathogenic fungi. In: Burger HD (ed) Microbial control of Pest and plant diseases 1970–1980. Academic Press, Elsevier, Amsterdam, Netherlands, pp 441–464

    Google Scholar 

  • Roberts DW, Humber RA (1981) Entomogenous fungi. In: Cole GT, Kendrick B (eds) Biology of conidial Fungi. Academic Press, Elsevier, Amsterdam, Netherlands, pp 201–236

    Google Scholar 

  • Rocha FD, Campos VP, de Souza JT (2010) Variation in lipid reserves of second-stage juveniles of Meloidogyne exigua in a coffee field and its relationship with infectivity. Nemat 12:365–371

    Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotech J 9:293–300

    Google Scholar 

  • Sarwar M (2015) Information on activities regarding biochemical pesticides: an ecological friendly plant protection against insects. Int J Eng Adv Res Tech 1(2):27–31

    Google Scholar 

  • Sarwar M, Ahmad N, Mix M, Tofique M (2012) Potential of plant materials for the management of cowpea Bruchid Callosobruchus analis (Coleoptera: Bruchidae) in Giant Cicer arietinum during storage. Nucleus 49(1):61–64

    Google Scholar 

  • Sarwar M, Ashfaq M, Ahmad A, Randhawa MAM (2013) Assessing the potential of assorted plant powders on survival of Caloglyphus grain mite (Acari: acaridae) in wheat grain. Int J Agril Sci Bioreso Eng Res 2(1):1–6

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Environmental risk assessment of transgene products using honey bee (Apis mellifera) larvae. Trends Biotech 16:168–175

    CAS  Google Scholar 

  • Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. In: Thangavel P, Sridevi G (eds) Environmental sustainability role of green Technologies. Springer, New Delhi, pp 49–63

    Google Scholar 

  • Shahid AA, Rao AQ, Rakhsh A, Husnain T (2012) Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Arch Biol Sci 64(1):21–42

    Google Scholar 

  • Shia WB, Feng MG (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari; tetranychidae) with a description of a mite egg bioassay. Biol Control 30:165–173

    Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Biinziger M (2011) Crops that teed the world 6. Past successes and forum challenges to the role played by maize in global food security. Food Sec 3(3):17–327

    Google Scholar 

  • Sims S, Pershing JC, Reich BJ (1996) Field evaluation of transgenic corn containing Bt Berliner insecticidal protein gene against Helicoverpa zea (Lepidoptera: Noctuidae). J Entomol Sci 31:310–346

    Google Scholar 

  • Stewart CN Jr (1996) Monitoring transgenic plants using in vivo markers. Nut Biutech 14:682. https://doi.org/10.1018/nbt0696-682

    Article  CAS  Google Scholar 

  • Stewart SD, Adamczyk JJ, Kinghten KS, Davis FM (2001) Impact of Bt cotton expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of Noctuidae (Lepidoptera) larvae. J Econ Entomol 94(3):752–760

    CAS  PubMed  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Kona-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Konez C, Zilberstoin A (1996) A synthetic cry/C gene, encoding a bacillus thuringiensis 8- endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci U S A 93:15012–15017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan MS (1989) Agricultural production and food security in Africa. The Challenges of Agricultural Production and Food Security in Africa; Proceedings of an Interactional Conference Organized by the Africa Leadership Fortin, OW, Nigeria. 27–30 July 1989

    Google Scholar 

  • Tabashnik BE, Liu YB, Dennehy TJ, Sims MA, Sisterson MS, Biggs RW, Carriere Y (2002a) Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 95:1018–1026

    CAS  PubMed  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Sims MA, Larkin K, Head GP, Moar WJ, Carriere Y (2002b) Control of resistant pink bollworm by transgenic cotton with Bacillus thuringiensis toxin Cry2Ab. Appl Env Microbiol 68:3790–3794

    CAS  Google Scholar 

  • Terefe M, Tefera T, Sakhuja PK (2009) Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invertebr Pathol 100:94–99

    PubMed  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotech 2:194–208

    Google Scholar 

  • Thierfelder C, Cheesman S, Rusinamhodzi L (2012) A comparative analysis of conservation agriculture systems: benefits and challenges of rotations and intercropping in Zimbabwe. Field Crops Res 137:327–250

    Google Scholar 

  • Usta C (2013) Microorganisms in biological Pest control — a review (bacterial toxin application and effect of environmental factors). In: Silva-Opps M (ed) Current Progress in biological research. IntechOpen Ltd, London, pp 287–317. https://doi.org/10.5772/55786

    Chapter  Google Scholar 

  • Van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biol Control 57:1–20

    Google Scholar 

  • Vey A, Hoagland R, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: Fungi as biocontrol agents Progress, problems and potential. CAB International, Wallingford, pp 311–345. ISBN 085199 356

    Google Scholar 

  • Vimaia Devi PS, Ranga Rao GV, Gopalakrishnan S, Sivakumar G (2012) Environmental impact of microbial pesticides. In: Sharma HC, Dhillon MK, Sehrawat KL (eds) Environmental safety of biotech and conventional IPM technologies. Studium Press LLC, USA, pp 261–272

    Google Scholar 

  • Vincent C, Andermatt M, Valero J (2007) Madex® and VirosoftCP4® viral biopesticides for codling moth control. In: Vincent C, Goethel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Cambridge, Massachusetts, USA, pp 336–343

    Google Scholar 

  • Walker DR, All JN, McPherson RM, Boerma HR, Parrott WA (2000) Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvet bean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 93:613–622

    CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (2000) Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Bio 30:135–143

    CAS  Google Scholar 

  • Wang C, Hu G, St. Leger RJ (2005) Differential gene expression by Metarhizium anisopliae growing in root exudates and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Gen Biol 42:704–718

    CAS  Google Scholar 

  • Wang H, Zhang M, Cai Y (2009) Problems, challenges, and strategic options of grain security in China. In: Sparks DL (ed) Advances in agronomy, vol 103. Academic Press, Elsevier, Amsterdam, Netherlands, pp 101–147

    Google Scholar 

  • Warren GW, Carozzi NB, Desai N, Koziel M (1992) Field evaluation of transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. J Econ Entomol 85:1651–1659

    CAS  Google Scholar 

  • Washburn JO, Kirkpatrick BA, Haas-Stapleton EJ, Vollanan L (1998) E evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Control 11:58–69

    Google Scholar 

  • Weibin S, Mingguang F (2004) Ovicidal activity of two fungal pathogens (Hyphomycetes) against Tetranychus cinnabarinus (Acarina: Tetranychidae). Chin Sci Bull 49(3):263–267

    Google Scholar 

  • Wilson FD, Flint HM, Deaton WR, Fischhoff DA, Perlak FJ, Armstrong TA, Fuchs RL, Berberich SA, Parks NJ, Stapp BR (1992) Resistance of cotton lines containing Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85:1516–1521

    Google Scholar 

  • Zhang XB, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103(26):9897–9902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Luo Q, Deng H, Yan Y (2008) Opportunities and challenges of sustainable agricultural development in China. Philo Trans Roy Soci B 363:893–904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, D.K. et al. (2021). Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security. In: Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P. (eds) Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4439-2_1

Download citation

Publish with us

Policies and ethics