ePIP–HoGu, A Cooperative DNA Binding System to Recruit Epigenetic Modifier to the Targeted DNA Locus

Part of the Springer Theses book series (Springer Theses)


Synthetic DNA-based epi-drugs mimicking the cooperative function of natural transcription factor pairs are in demand owing to their flexible gap distance, favorable sequence selectivity, and wide biological applications. Here, we detail the development of the a epigenetically active cooperative DNA binding platform assisted by Cucurbit[7]uril (CB7) host–guest modules (ePIP–HoGu) that not only mimic the operation of their natural counterparts as pairs but are also capable of recruiting the epigenetic modifiers to a particular DNA locus. A CB7-assisted cooperative DNA binding system demonstrated superior cooperativity and versatility over its conventional counterpart, especially for the situation of long spacing, long PIP length, and flexible binding orientation. The in vitro HAT-ChIP-PCR assay validated in vitro that ePIP–HoGu could remarkably recruit epi-enzyme modulator to the target sequence with DNA repeat binding sites, resulting in proximate histone acetylation. Our synthetic approach suggests the potential of delivering epi-drugs precisely and activating genes on demand.


  1. 1.
    Yu Z, Ai M, Samanta SK, et al (2020) A synthetic transcription factor pair mimic for precise recruitment of an epigenetic modifier to the targeted DNA locus. Chem Commun 56: 2296–2299Google Scholar
  2. 2.
    Jolma A, Yin Y, Nitta KR et al (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527:384–388CrossRefGoogle Scholar
  3. 3.
    Mapp AK, Ansari AZ, Ptashne M et al (2000) Activation of gene expression by small molecule transcription factors. Proc Natl Acad Sci USA 97:3930–3935PubMedCrossRefGoogle Scholar
  4. 4.
    Ueno M, Murakami A, Makino K et al (1993) Arranging quaternary structure of peptides by cyclodextrin-guest inclusion complex: sequence-specific DNA binding by a peptide dimer with artificial dimerization module. J Am Chem Soc 115:12575–12576CrossRefGoogle Scholar
  5. 5.
    Mosquera J, Jimenez-Balsa A, Dodero VI et al (2013) Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides. Nat Commun 4:1874PubMedCrossRefGoogle Scholar
  6. 6.
    Blanco JB, Dodero VI, Vázquez ME et al (2006) Sequence-specific DNA binding by noncovalent peptide-tripyrrole conjugates. Angew Chem Int Ed Engl 45:8210–8214PubMedCrossRefGoogle Scholar
  7. 7.
    Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235PubMedCrossRefGoogle Scholar
  8. 8.
    Yu Z, Pandian GN, Hidaka T et al (2019) Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 147:66–85PubMedCrossRefGoogle Scholar
  9. 9.
    Kielkopf CL, White S, Szewczyk JW et al (1998) A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. Science 282:111–115PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Yu Z, Guo C, Wei Y et al (2018) Pip-HoGu: an artificial assembly with cooperative DNA recognition capable of mimicking transcription factor pairs. J Am Chem Soc 140:2426–2429PubMedCrossRefGoogle Scholar
  11. 11.
    Yu Z, Hsieh WC, Asamitsu S et al (2018) Orthogonal gammaPNA dimerization domains empower DNA binders with cooperativity and versatility mimicking that of transcription factor pairs. Chem Eur J 24:14183–14188PubMedCrossRefGoogle Scholar
  12. 12.
    Weyermann P, Dervan PB (2002) Recognition of ten base pairs of DNA by head-to-head hairpin dimers. J Am Chem Soc 124:6872–6878PubMedCrossRefGoogle Scholar
  13. 13.
    Poulin-Kerstien AT, Dervan PB (2003) DNA-templated dimerization of hairpin polyamides. J Am Chem Soc 125:15811–15821PubMedCrossRefGoogle Scholar
  14. 14.
    Taniguchi J, Feng Y, Pandian GN et al (2018) Biomimetic artificial epigenetic code for targeted acetylation of histones. J Am Chem Soc 140:7108–7115PubMedCrossRefGoogle Scholar
  15. 15.
    Erwin GS, Grieshop MP, Ali A et al (2017) Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358:1617–1622PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Liu S, Ruspic C, Mukhopadhyay P et al (2005) The Cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127:15959–15967PubMedCrossRefGoogle Scholar
  17. 17.
    Jeon WS, Moon K, Park SH et al (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril Host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989PubMedCrossRefGoogle Scholar
  18. 18.
    Kim J, Jung I-S, Kim S-Y et al (2000) New Cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of Cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540–541CrossRefGoogle Scholar
  19. 19.
    Gong B, Choi B-K, Kim J-Y et al (2015) High affinity host-guest fret pair for single-vesicle content-mixing assay: observation of flickering fusion events. J Am Chem Soc 137:8908–8911PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou X, Su X, Pathak P et al (2017) Host-guest tethered DNA transducer: ATP fueled release of a protein inhibitor from Cucurbit[7]uril. J Am Chem Soc 139:13916–13921PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Webber MJ, Appel EA, Vinciguerra B et al (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci USA 113:14189–14194PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Park KM, Murray J, Kim K (2017) Ultrastable artificial binding pairs as a supramolecular latching system: a next generation chemical tool for proteomics. Acc Chem Res 50:644–646PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shetty D, Khedkar JK, Park KM et al (2015) Can we beat the biotin–avidin pair? cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. Chem Soc Rev 44:8747–8761PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kim KL, Sung G, Sim J et al (2018) Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging. Nat Commun 9:1712PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vinciguerra B, Cao L, Cannon JR et al (2012) Synthesis and self-assembly processes of Monofunctionalized Cucurbit[7]uril. J Am Chem Soc 134:13133–13140PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Yu Z, Taniguchi J, Wei Y et al (2017) Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitors. Eur J Med Chem 138:320–327PubMedCrossRefGoogle Scholar
  27. 27.
    Pandey S, Kankanamalage D, Zhou X et al (2019) Chaperone-assisted host-guest interactions revealed by single-molecule force spectroscopy. J Am Chem Soc 141:18385–18389PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Yu G, Jie K, Huang F (2015) Supramolecular Amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303PubMedCrossRefGoogle Scholar
  29. 29.
    Xiangshu X, Peng Y, Hyun-Suk L et al (2007) A cell-permeable synthetic transcription factor mimic. Angew Chem Int Ed Engl 46:2865–2868CrossRefGoogle Scholar
  30. 30.
    Kwon Y, Arndt H-D, Mao Q et al (2004) Small molecule transcription factor mimic. J Am Chem Soc 126:15940–15941PubMedCrossRefGoogle Scholar
  31. 31.
    Han L, Pandian GN, Chandran A et al (2015) A synthetic DNA-binding domain guides distinct Chromatin-modifying small molecules to activate an identical gene network. Angew Chem Int Ed Engl 54:8700–8703PubMedCrossRefGoogle Scholar
  32. 32.
    Zou T, Hashiya F, Wei Y et al (2018) Direct observation of H3–H4 Octasome by high-speed AFM. Chem Eur J 24:15998–16002PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen UTT, Bittova L, Müller MM et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Meth 11:834CrossRefGoogle Scholar
  34. 34.
    Delvecchio M, Gaucher J, Aguilar-Gurrieri C, et al (2013) Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 20:1040–1046Google Scholar
  35. 35.
    Morgunova E, Taipale J (2017) Structural perspective of cooperative transcription factor binding. Curr. Opin. Struct. Biol. 47:1–8PubMedCrossRefGoogle Scholar
  36. 36.
    Pazos E, Mosquera J, Vázquez ME et al (2011) DNA recognition by synthetic constructs. ChemBioChem 12:1958–1973PubMedCrossRefGoogle Scholar
  37. 37.
    Ravindranath AJ, Cadigan KM (2016) The role of the C-Clamp in Wnt-related colorectal cancers. Cancers 8:74PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Chavez A, Tuttle M, Pruitt BW et al (2016) Comparison of Cas9 activators in multiple species. Nat Meth 13:563CrossRefGoogle Scholar
  39. 39.
    Kawamoto Y, Bando T, Kamada F et al (2013) Development of a new method for synthesis of tandem hairpin pyrrole-imidazole polyamide probes targeting human telomeres. J Am Chem Soc 135:16468–16477PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Matharu N, Rattanasopha S, Tamura S, et al (2019) CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science. 363:eaau0629Google Scholar
  41. 41.
    Garriga-Canut M, Agustín-Pavón C, Herrmann F et al (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci USA 109:E3136–E3145PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Maeder ML, Linder SJ, Reyon D et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Meth 10:243CrossRefGoogle Scholar
  43. 43.
    Grevet JD, Lan X, Hamagami N et al (2018) Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 361:285–290PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bockus AT, Smith LC, Grice AG et al (2016) Cucurbit[7]uril–Tetramethylrhodamine conjugate for direct sensing and cellular imaging. J Am Chem Soc 138:16549–16552PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations