Synthetic DNA Binding Assembly: Architecture, Application and Perspectives

Part of the Springer Theses book series (Springer Theses)


Manipulating DNA transcription using synthetic DNA binder has always been one of the ideal strategies for biological regulation and disease therapy, in the premise of considerable efficacy. Although it has been studied for decades, synthetic DNA binder is gradually less popular for researchers from the aspects of structural study, wide biological exploration and clinical application. The partial reasons arise from less sequence selectivity and difficulty to install advanced working moiety on the scaffold of synthetic DNA binder. In order to closely study its structural domain and potential optimization approaches, here I discuss the architecture engineering of DNA binding system and how to construct advanced DNA binding assembly based on the well-studied DNA binding system Pyrrole–imidazole polyamides (PIPs). The recent progress on structural assembly and biological application are extensively introduced.


  1. 1.
    Yu Z, Pandian GN, Hidaka T et al (2019) Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 147:66–85PubMedCrossRefGoogle Scholar
  2. 2.
    Jolma A, Yin Y, Nitta KR et al (2015) DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527:384–388CrossRefGoogle Scholar
  3. 3.
    Trauger JW, Baird EE, Dervan PB (1996) Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382:559–561PubMedCrossRefGoogle Scholar
  4. 4.
    Gottesfeld JM, Neely L, Trauger JW et al (1997) Regulation of gene expression by small molecules. Nature 387:202–205PubMedCrossRefGoogle Scholar
  5. 5.
    Eguchi A, Lee Garrett O, Wan F et al (2014) Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers. Biochem J 462:397–413PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  8. 8.
    Yesudhas D, Batool M, Anwar M et al (2017) Proteins recognizing DNA: structural uniqueness and versatility of DNA-binding domains in stem cell transcription factors. Genes 8:192PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Kim H, Kim J-S (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321PubMedCrossRefGoogle Scholar
  10. 10.
    Heiderscheit EA, Eguchi A, Spurgat MC et al (2018) Reprogramming cell fate with artificial transcription factors. FEBS Lett 592:888–900PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Brookhouser N, Raman S, Potts C et al (2017) May i cut in? Gene editing approaches in human induced pluripotent stem cells. Cells 6:5PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Morgunova E, Taipale J (2017) Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol 47:1–8PubMedCrossRefGoogle Scholar
  13. 13.
    Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166:538–554PubMedCrossRefGoogle Scholar
  14. 14.
    Tapia N, MacCarthy C, Esch D et al (2015) Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci Rep 5:13533PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kamachi Y, Uchikawa M, Tanouchi A et al (2001) Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272–1286PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Narasimhan K, Pillay S, Huang Y-H et al (2015) DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors. Nucleic Acids Res 43:1513–1528PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chasman DI, Leatherwood J, Carey M et al (1989) Activation of yeast polymerase II transcription by herpesvirus VP16 and GAL4 derivatives in vitro. Mol Cell Biol 9:4746–4749PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Sadowski I, Ma J, Triezenberg S et al (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563PubMedCrossRefGoogle Scholar
  19. 19.
    Maeder ML, Linder SJ, Cascio VM et al (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Weintraub H, Dwarki VJ, Verma I et al (1991) Muscle-specific transcriptional activation by MyoD. Genes Dev 5:1377–1386PubMedCrossRefGoogle Scholar
  22. 22.
    Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kawamoto Y, Bando T, Sugiyama H (2018) Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 26:1393–1411PubMedCrossRefGoogle Scholar
  24. 24.
    Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235PubMedCrossRefGoogle Scholar
  25. 25.
    Leung C-H, Chan DS-H, Ma VP-Y et al (2013) DNA-binding small molecules as inhibitors of transcription factors. Med Res Rev 33:823–846PubMedCrossRefGoogle Scholar
  26. 26.
    Liu H-K, Sadler PJ (2011) Metal complexes as DNA intercalators. Acc Chem Res 44:349–359PubMedCrossRefGoogle Scholar
  27. 27.
    Satam V, Babu B, Porte A et al (2012) Synthesis and DNA binding properties of 1-(3-aminopropyl)-imidazole-containing triamide f-Im∗PyIm: a novel diamino polyamide designed to target 5′-ACGCGT-3′. Bioorg Med Chem Lett 22:5898–5902PubMedCrossRefGoogle Scholar
  28. 28.
    Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bewley CA, Gronenborn AM, Clore GM (1998) Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct 27:105–131PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chenoweth DM, Dervan PB (2010) Structural basis for cyclic Py-Im polyamide allosteric inhibition of nuclear receptor binding. J Am Chem Soc 132:14521–14529PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sacui I, Hsieh W-C, Manna A et al (2015) Gamma peptide nucleic acids: as orthogonal nucleic acid recognition codes for organizing molecular self-assembly. J Am Chem Soc 137:8603–8610PubMedCrossRefGoogle Scholar
  32. 32.
    Dose C, Farkas ME, Chenoweth DM et al (2008) Next generation hairpin polyamides with (R)-3,4-diaminobutyric acid turn unit. J Am Chem Soc 130:6859–6866PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sahu B, Chenna V, Lathrop KL et al (2009) Synthesis of conformationally preorganized and cell-permeable guanidine-based γ-peptide nucleic acids (γGPNAs). J Org Chem 74:1509–1516PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dragulescu-Andrasi A, Rapireddy S, Frezza BM et al (2006) A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 128:10258–10267PubMedCrossRefGoogle Scholar
  35. 35.
    Jain DR, Anandi VL, Lahiri M et al (2014) Influence of pendant chiral Cγ-(Alkylideneamino/Guanidino) cationic side-chains of PNA backbone on hybridization with complementary DNA/RNA and cell permeability. J Org Chem 79:9567–9577PubMedCrossRefGoogle Scholar
  36. 36.
    Manna A, Rapireddy S, Sureshkumar G et al (2015) Synthesis of optically pure γPNA monomers: a comparative study. Tetrahedron 71:3507–3514PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kumar P, Jain DR (2015) Cγ-aminopropylene peptide nucleic acid (amp-PNA): chiral cationic PNAs with superior PNA:DNA/RNA duplex stability and cellular uptake. Tetrahedron 71:3378–3384CrossRefGoogle Scholar
  38. 38.
    Ellipilli S, Ganesh KN (2015) Fluorous peptide nucleic acids: PNA analogues with fluorine in backbone (γ-CF2-apg-PNA) enhance cellular uptake. J Org Chem 80:9185–9191PubMedCrossRefGoogle Scholar
  39. 39.
    Anandhakumar C, Li Y, Kizaki S et al (2014) Next-generation sequencing studies guide the design of pyrrole-imidazole polyamides with improved binding specificity by the addition of beta-alanine. ChemBioChem 15:2647–2651PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Montgomery JL, Rejali N, Wittwer CT (2014) The influence of nucleotide sequence and temperature on the activity of thermostable DNA polymerases. J Mol Diagn 16:305–313PubMedCrossRefGoogle Scholar
  41. 41.
    Larsen TA, Goodsell DS, Cascio D et al (1989) The structure of DAPI bound to DNA. J Biomol Struct Dyn 7:477–491PubMedCrossRefGoogle Scholar
  42. 42.
    Newton B (1975) Berenil: a trypanocide with selective activity against extranuclear DNA. In: Mechanism of action of antimicrobial and antitumor agents. Springer, Berlin, pp 34–47Google Scholar
  43. 43.
    Boger DL, Fink BE, Brunette SR et al (2001) A simple, high-resolution method for establishing dna binding affinity and sequence selectivity. J Am Chem Soc 123:5878–5891PubMedCrossRefGoogle Scholar
  44. 44.
    Saha A, Kizaki S, Han JH et al (2018) UVA irradiation of (Br)U-substituted DNA in the presence of Hoechst 33258. Bioorg Med Chem 26:37–40PubMedCrossRefGoogle Scholar
  45. 45.
    Finlay AC, Hochstein FA, Sobin BA et al (1951) Netropsin, a new antibiotic produced by a streptomyces. J Am Chem Soc 73:341–343CrossRefGoogle Scholar
  46. 46.
    Dimarco A, Gaetani M, Orezzi P et al (1962) Experimental studies on distamycin A—a new antibiotic with cytotoxic activity. Cancer Chemother Rep 18:15–19PubMedGoogle Scholar
  47. 47.
    Woods CR, Faucher N, Eschgfaller B et al (2002) Synthesis and DNA binding properties of saturated distamycin analogues. Bioorg Med Chem Lett 12:2647–2650PubMedCrossRefGoogle Scholar
  48. 48.
    Arcamone F, Penco S, Orezzi P et al (1964) Structure and synthesis of distamycin A. Nature 203:1064PubMedCrossRefGoogle Scholar
  49. 49.
    Kopka ML, Yoon C, Goodsell D et al (1985) The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A 82:1376–1380PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Van Dyke MW, Hertzberg RP, Dervan PB (1982) Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci U S A 79:5470–5474PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Pelton JG, Wemmer DE (1989) Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A 86:5723–5727PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wade WS, Mrksich M, Dervan PB (1993) Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA. Biochemistry 32:11385–11389PubMedCrossRefGoogle Scholar
  53. 53.
    Mrksich M, Parks ME, Dervan PB (1994) Hairpin peptide motif. A new class of oligopeptides for sequence-specific recognition in the minor groove of double-helical DNA. J Am Chem Soc 116:7983–7988CrossRefGoogle Scholar
  54. 54.
    Kielkopf CL, Baird EE, Dervan PB et al (1998) Structural basis for G.C recognition in the DNA minor groove. Nat Struct Biol 5:104–109PubMedCrossRefGoogle Scholar
  55. 55.
    Turner JM, Swalley SE, Baird EE et al (1998) Aliphatic/aromatic amino acid pairings for polyamide recognition in the minor groove of DNA. J Am Chem Soc 120:6219–6226CrossRefGoogle Scholar
  56. 56.
    White S, Szewczyk JW, Turner JM et al (1998) Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391:468–471PubMedCrossRefGoogle Scholar
  57. 57.
    Padroni G, Parkinson JA, Fox KR et al (2017) Structural basis of DNA duplex distortion induced by thiazole-containing hairpin polyamides. Nucleic Acids Res 1211Google Scholar
  58. 58.
    Iguchi A, Fukuda N, Takahashi T et al (2013) RNA binding properties of novel gene silencing pyrrole-imidazole polyamides. Biol Pharm Bull 36:1152–1158PubMedCrossRefGoogle Scholar
  59. 59.
    Baird EE, Dervan PB (1996) Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids. J Am Chem Soc 118:6141–6146CrossRefGoogle Scholar
  60. 60.
    Wurtz NR, Turner JM, Baird EE et al (2001) Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org Lett 3:1201–1203PubMedCrossRefGoogle Scholar
  61. 61.
    Cho J, Parks ME, Dervan PB (1995) Cyclic polyamides for recognition in the minor groove of DNA. Proc Natl Acad Sci U S A 92:10389–10392PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mrksich M, Dervan PB (1994) Design of a covalent peptide heterodimer for sequence-specific recognition in the minor groove of double-helical DNA. J Am Chem Soc 116:3663–3664CrossRefGoogle Scholar
  63. 63.
    Heckel A, Dervan PB (2003) U-pin polyamide motif for recognition of the DNA minor groove. Chem Eur J 9:3353–3366PubMedCrossRefGoogle Scholar
  64. 64.
    Kawamoto Y, Sasaki A, Chandran A et al (2016) Targeting 24 bp within telomere repeat sequences with tandem tetramer pyrrole-imidazole polyamide probes. J Am Chem Soc 138:14100–14107PubMedCrossRefGoogle Scholar
  65. 65.
    Urbach AR, Dervan PB (2001) Toward rules for 1:1 polyamide:DNA recognition. Proc Natl Acad Sci U S A 98:4343–4348PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hargrove AE, Raskatov JA, Meier JL et al (2012) Characterization and solubilization of pyrrole-imidazole polyamide aggregates. J Med Chem 55:5425–5432PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Meier JL, Montgomery DC, Dervan PB (2012) Enhancing the cellular uptake of Py-Im polyamides through next-generation aryl turns. Nucleic Acids Res 40:2345–2356PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yang F, Nickols NG, Li BC et al (2013) Animal toxicity of hairpin pyrrole-imidazole polyamides varies with the turn unit. J Med Chem 56:7449–7457PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  70. 70.
    Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–650PubMedCrossRefGoogle Scholar
  71. 71.
    Sakamoto N, Chastain PD, Parniewski P et al (1999) Sticky DNA: self-association properties of long GAA·TTC repeats in R·R·Y triplex structures from Friedreich’s Ataxia. Mol Cell 3:465–475PubMedCrossRefGoogle Scholar
  72. 72.
    Li Y, Syed J, Sugiyama H (2016) RNA-DNA triplex formation by long noncoding RNAs. Cell Chem Biol 23:1325–1333PubMedCrossRefGoogle Scholar
  73. 73.
    Vittorio L, Stefano DT, Linda C et al (2013) The G-triplex DNA. Angew Chem Int Ed Engl 52:2269–2273CrossRefGoogle Scholar
  74. 74.
    Khorkova O, Wahlestedt C (2017) Oligonucleotide therapies for disorders of the nervous system. Nat Biotech 35:249–263CrossRefGoogle Scholar
  75. 75.
    Yu G, Jie K, Huang F (2015) Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 115:7240–7303PubMedCrossRefGoogle Scholar
  76. 76.
    Rodriguez J, Mosquera J, Garcia-Fandino R et al (2016) A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves. Chem Sci 7:3298–3303PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Azuma Y, Imanishi M, Yoshimura T et al (2009) Cobalt(II)-responsive DNA binding of a GCN4-bZIP protein containing cysteine residues functionalized with iminodiacetic acid. Angew Chem Int Ed Engl 121:6985–6988CrossRefGoogle Scholar
  78. 78.
    Ihara T, Uemura A, Futamura A et al (2009) Cooperative DNA probing using a β-cyclodextrin−DNA conjugate and a nucleobase-specific fluorescent ligand. J Am Chem Soc 131:1386–1387PubMedCrossRefGoogle Scholar
  79. 79.
    Machida T, Novoa A, Gillon É et al (2017) Dynamic cooperative glycan assembly blocks the binding of bacterial lectins to epithelial cells. Angew Chem Int Ed Engl 56:6762–6766PubMedCrossRefGoogle Scholar
  80. 80.
    Zhou X, Su X, Pathak P et al (2017) Host-guest tethered DNA transducer: ATP fueled release of a protein inhibitor from cucurbit[7]uril. J Am Chem Soc 139:13916–13921PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Distefano MD, Shin JA, Dervan PB (1991) Cooperative binding of oligonucleotides to DNA by triple helix formation: dimerization via Watson-Crick hydrogen bonds. J Am Chem Soc 113:5901–5902CrossRefGoogle Scholar
  82. 82.
    Strobel SA, Dervan PB (1989) Cooperative site specific binding of oligonucleotides to duplex DNA. J Am Chem Soc 111:7286–7287CrossRefGoogle Scholar
  83. 83.
    Gorska K, Winssinger N (2013) Reactions templated by nucleic acids: more ways to translate oligonucleotide-based instructions into emerging function. Angew Chem Int Ed Engl 52:6820–6843PubMedCrossRefGoogle Scholar
  84. 84.
    Cuenoud B, Schepartz A (1993) Altered specificity of DNA-binding proteins with transition metal dimerization domains. Science 259:510–513PubMedCrossRefGoogle Scholar
  85. 85.
    Ihara T, Takeda Y, Jyo A (2001) Metal ion-directed cooperative triple helix formation of glutamic acid−oligonucleotide conjugate. J Am Chem Soc 123:1772–1773PubMedCrossRefGoogle Scholar
  86. 86.
    Tanada M, Tsujita S, Kataoka T et al (2006) Cu2+-mediated assembly of the minor groove binders on the DNA template with sequence selectivity. Org Lett 8:2475–2478PubMedCrossRefGoogle Scholar
  87. 87.
    Tsujita S, Tanada M, Kataoka T et al (2007) Equilibrium shift by target DNA substrates for determination of DNA binding ligands. Bioorg Med Chem Lett 17:68–72PubMedCrossRefGoogle Scholar
  88. 88.
    Koda H, Brazier JA, Onishi I et al (2015) Strong positive cooperativity in binding to the A3T3 repeat by Hoechst 33258 derivatives attaching the quinoline units at the end of a branched linker. Bioorg Med Chem 23:4583–4590PubMedCrossRefGoogle Scholar
  89. 89.
    Murase H, Noguchi T, Sasaki S (2018) Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay. Bioorg Med Chem Lett 28(10):1832–1835Google Scholar
  90. 90.
    Mosquera J, Jimenez-Balsa A, Dodero VI et al (2013) Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides. Nat Commun 4:1874PubMedCrossRefGoogle Scholar
  91. 91.
    Sánchez MI, Mosquera J, Vázquez ME et al (2014) Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl–bis(benzamidine) components. Angew Chem Int Ed Engl 53:9917–9921PubMedCrossRefGoogle Scholar
  92. 92.
    Rodríguez J, Mosquera J, Vázquez ME et al (2016) Nickel-promoted recognition of long DNA sites by designed peptide derivatives. Chem Eur J 22:13474–13477PubMedCrossRefGoogle Scholar
  93. 93.
    Morii T, Tanaka T, Sato S-I et al (2002) A general strategy to determine a target DNA sequence of a short peptide: application to a D-peptide. J Am Chem Soc 124:180–181PubMedCrossRefGoogle Scholar
  94. 94.
    Lai J, Shah BP, Garfunkel E et al (2013) Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 7:2741–2750PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ueno M, Murakami A, Makino K et al (1993) Arranging quaternary structure of peptides by cyclodextrin-guest inclusion complex: sequence-specific DNA binding by a peptide dimer with artificial dimerization module. J Am Chem Soc 115:12575–12576CrossRefGoogle Scholar
  96. 96.
    Aizawa Y, Sugiura Y, Ueno M et al (1999) Stability of the dimerization domain effects the cooperative DNA binding of short peptides. Biochemistry 38:4008–4017PubMedCrossRefGoogle Scholar
  97. 97.
    Blanco JB, Dodero VI, Vázquez ME et al (2006) Sequence-specific DNA binding by noncovalent peptide-tripyrrole conjugates. Angew Chem Int Ed Engl 45:8210–8214PubMedCrossRefGoogle Scholar
  98. 98.
    Sheldrick GM, Jones PG, Kennard O et al (1978) Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 271:223–225PubMedCrossRefGoogle Scholar
  99. 99.
    Chang D, Kim KT, Lindberg E et al (2018) Accelerating turnover frequency in nucleic acid templated reactions. Bioconjug Chem 29:158–163PubMedCrossRefGoogle Scholar
  100. 100.
    Fujimoto J, Bando T, Minoshima M et al (2008) Detection of triplet repeat sequences in the double-stranded DNA using pyrene-functionalized pyrrole-imidazole polyamides with rigid linkers. Bioorg Med Chem 16:5899–5907PubMedCrossRefGoogle Scholar
  101. 101.
    Hsieh W-C, Bahal R, Thadke SA et al (2018) Design of a “mini” nucleic acid probe for cooperative binding of an RNA-repeated transcript associated with myotonic dystrophy type 1. Biochemistry 57:907–911PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295PubMedCrossRefGoogle Scholar
  103. 103.
    Pandian GN, Nakano Y, Sato S et al (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2:e544CrossRefGoogle Scholar
  104. 104.
    Han L, Pandian GN, Chandran A et al (2015) A synthetic DNA-binding domain guides distinct chromatin-modifying small molecules to activate an identical gene network. Angew Chem Int Ed Engl 54:8700–8703PubMedCrossRefGoogle Scholar
  105. 105.
    Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13:337–356PubMedCrossRefGoogle Scholar
  106. 106.
    Erwin GS, Grieshop MP, Ali A et al (2017) Synthetic transcription elongation factors license transcription across repressive chromatin. Science 358:1617–1622PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90PubMedCrossRefGoogle Scholar
  108. 108.
    Lasko LM, Jakob CG, Edalji RP et al (2017) Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550:128PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bowers EM, Yan G, Mukherjee C et al (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17:471–482PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Arndt HD, Hauschild KE, Sullivan DP et al (2003) Toward artificial developmental regulators. J Am Chem Soc 125:13322–13323PubMedCrossRefGoogle Scholar
  111. 111.
    Kwon Y, Arndt HD, Mao Q et al (2004) Small molecule transcription factor mimic. J Am Chem Soc 126:15940–15941PubMedCrossRefGoogle Scholar
  112. 112.
    Amamoto Y, Aoi Y, Nagashima N et al (2017) Synthetic posttranslational modifications: chemical catalyst-driven regioselective histone acylation of native chromatin. J Am Chem Soc 139:7568–7576PubMedCrossRefGoogle Scholar
  113. 113.
    Dickinson LA, Trauger JW, Baird EE et al (1999) Inhibition of Ets-1 DNA binding and ternary complex formation between Ets-1, NF-kappaB, and DNA by a designed DNA-binding ligand. J Biol Chem 274:12765–12773PubMedCrossRefGoogle Scholar
  114. 114.
    Dickinson LA, Trauger JW, Baird EE et al (1999) Anti-repression of RNA polymerase II transcription by pyrrole-imidazole polyamides. Biochemistry 38:10801–10807PubMedCrossRefGoogle Scholar
  115. 115.
    Marini NJ, Baliga R, Taylor MJ et al (2003) DNA binding hairpin polyamides with antifungal activity. Chem Biol 10:635–644PubMedCrossRefGoogle Scholar
  116. 116.
    Best TP, Edelson BS, Nickols NG et al (2003) Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Proc Natl Acad Sci U S A 100:12063–12068PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kurmis AA, Yang F, Welch TR et al (2017) A pyrrole-imidazole polyamide is active against enzalutamide-resistant prostate cancer. Cancer Res 77:2207–2212PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hargrove AE, Martinez TF, Hare AA et al (2015) Tumor repression of VCaP xenografts by a pyrrole-imidazole polyamide. PLoS ONE 10:e0143161PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Szablowski JO, Raskatov JA, Dervan PB (2016) An HRE-binding Py-Im polyamide impairs hypoxic signaling in tumors. Mol Cancer Ther 15:608–617PubMedCrossRefGoogle Scholar
  120. 120.
    Mysore VS, Szablowski J, Dervan PB et al (2016) A DNA-binding molecule targeting the adaptive hypoxic response in multiple myeloma has potent antitumor activity. Mol Cancer Res 14:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Olenyuk BZ, Zhang GJ, Klco JM et al (2004) Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proc Natl Acad Sci U S A 101:16768–16773PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Nickols NG, Jacobs CS, Farkas ME et al (2007) Modulating hypoxia-inducible transcription by disrupting the HIF-1-DNA interface. ACS Chem Biol 2:561–571PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nickols NG, Szablowski JO, Hargrove AE et al (2013) Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 12:675–684PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Raskatov JA, Meier JL, Puckett JW et al (2012) Modulation of NF-kappaB-dependent gene transcription using programmable DNA minor groove binders. Proc Natl Acad Sci U S A 109:1023–1028PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang Y, Sicot G, Cui X et al (2011) Targeting a DNA binding motif of the EVI1 protein by a pyrrole-imidazole polyamide. Biochemistry 50:10431–10441PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Muzikar KA, Nickols NG, Dervan PB (2009) Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression. Proc Natl Acad Sci U S A 106:16598–16603PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wei Y, Pandian GN, Yu Z et al (2018) Synthetic DNA-binding inhibitor of HES1 alters the notch signaling pathway and induces neuronal differentiation. ACS Omega 3:3608–3616PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Taniguchi J, Pandian GN, Hidaka T et al (2017) A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res 45:9219–9228PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hidaka T, Pandian GN, Taniguchi J et al (2017) Creation of a synthetic ligand for mitochondrial DNA sequence recognition and promoter-specific transcription suppression. J Am Chem Soc 139:8444–8447PubMedCrossRefGoogle Scholar
  130. 130.
    Syed J, Pandian GN, Sato S et al (2014) Targeted suppression of EVI1 oncogene expression by sequence-specific pyrrole-imidazole polyamide. Chem Biol 21:1370–1380PubMedCrossRefGoogle Scholar
  131. 131.
    Taniguchi M, Fujiwara K, Nakai Y et al (2014) Inhibition of malignant phenotypes of human osteosarcoma cells by a gene silencer, a pyrrole–imidazole polyamide, which targets an E-box motif. FEBS Open Bio 4:328–334PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Igarashi J, Fukuda N, Inoue T et al (2015) Preclinical study of novel gene silencer pyrrole-imidazole polyamide targeting human TGF-beta1 promoter for hypertrophic scars in a common marmoset primate model. PLoS ONE 10:e0125295PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kojima T, Wang X, Fujiwara K et al (2014) Inhibition of human osteosarcoma cell migration and invasion by a gene silencer, pyrrole-imidazole polyamide, targeted at the human MMP9 NF-kappaB binding site. Biol Pharm Bull 37:1460–1465PubMedCrossRefGoogle Scholar
  134. 134.
    Takahashi T, Asami Y, Kitamura E et al (2008) Development of pyrrole-imidazole polyamide for specific regulation of human aurora kinase-A and -B gene expression. Chem Biol 15:829–841PubMedCrossRefGoogle Scholar
  135. 135.
    Chiang SY, Burli RW, Benz CC et al (2000) Targeting the Ets binding site of the HER2/neu promoter with pyrrole-imidazole polyamides. J Biol Chem 275:24246–24254PubMedCrossRefGoogle Scholar
  136. 136.
    Ueno T, Fukuda N, Tsunemi A et al (2009) A novel gene silencer, pyrrole-imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertens 27:508–516PubMedCrossRefGoogle Scholar
  137. 137.
    Suzuki T, Asami Y, Takahashi T et al (2009) Development of a molecule-recognized promoter DNA sequence for inhibition of HER2 expression. J Antibiot 62:339–341PubMedCrossRefGoogle Scholar
  138. 138.
    Matsuda H, Fukuda N, Ueno T et al (2011) Transcriptional inhibition of progressive renal disease by gene silencing pyrrole-imidazole polyamide targeting of the transforming growth factor-beta1 promoter. Kidney Int 79:46–56PubMedCrossRefGoogle Scholar
  139. 139.
    Yasuda A, Noguchi K, Minoshima M et al (2011) DNA ligand designed to antagonize EBNA1 represses Epstein-Barr virus-induced immortalization. Cancer Sci 102:2221–2230PubMedCrossRefGoogle Scholar
  140. 140.
    Burridge PW, Matsa E, Shukla P et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Wei Y, Pandian GN, Zou T et al (2016) A multi-target small molecule for targeted transcriptional activation of therapeutically significant nervous system genes. ChemistryOpen 5:517–521PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yu Z, Taniguchi J, Wei Y et al (2017) Antiproliferative and apoptotic activities of sequence-specific histone acetyltransferase inhibitors. Eur J Med Chem 138:320–327PubMedCrossRefGoogle Scholar
  143. 143.
    Taniguchi J, Feng Y, Pandian GN et al (2018) Biomimetic artificial epigenetic code for targeted acetylation of histones. J Am Chem Soc 140:7108–7115PubMedCrossRefGoogle Scholar
  144. 144.
    Alagarswamy K, Shinohara KI, Takayanagi S et al (2018) Region-specific alteration of histone modification by LSD1 inhibitor conjugated with pyrrole-imidazole polyamide. Oncotarget 9:29316–29335PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yu Z, Guo C, Wei Y et al (2018) Pip-HoGu: an artificial assembly with cooperative DNA recognition capable of mimicking transcription factor pairs. J Am Chem Soc 140:2426–2429PubMedCrossRefGoogle Scholar
  146. 146.
    Ma X, Zhao Y (2015) Biomedical applications of supramolecular systems based on host-guest interactions. Chem Rev 115:7794–7839PubMedCrossRefGoogle Scholar
  147. 147.
    Yu Z, Hsieh WC, Asamitsu S et al (2018) Orthogonal gammaPNA dimerization domains empower DNA binders with cooperativity and versatility mimicking that of transcription factor pairs. Chem Eur J 24:14183–14188PubMedCrossRefGoogle Scholar
  148. 148.
    Liu S, Ruspic C, Mukhopadhyay P et al (2005) The cucurbit[n]uril family: prime components for self-sorting systems. J Am Chem Soc 127:15959–15967PubMedCrossRefGoogle Scholar
  149. 149.
    Jeon WS, Moon K, Park SH et al (2005) Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J Am Chem Soc 127:12984–12989PubMedCrossRefGoogle Scholar
  150. 150.
    Yu Z, M, Samanta al (2020) A synthetic transcription factor pair for precise recruitment of an epigenetic modifier to the targeted DNA locus. Chem Commun 56:2296–2299 Google Scholar
  151. 151.
    Kim J, Jung I-S, Kim S-Y et al (2000) New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc 122:540–541CrossRefGoogle Scholar
  152. 152.
    Gong B, Choi B-K, Kim J-Y et al (2015) High affinity host-guest FRET pair for single-vesicle content-mixing assay: observation of flickering fusion events. J Am Chem Soc 137:8908–8911PubMedCrossRefGoogle Scholar
  153. 153.
    Webber MJ, Appel EA, Vinciguerra B et al (2016) Supramolecular PEGylation of biopharmaceuticals. Proc Natl Acad Sci U S A 113:14189–14194PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Park KM, Murray J, Kim K (2017) Ultrastable artificial binding pairs as a supramolecular latching system: a next generation chemical tool for proteomics. Acc Chem Res 50:644–646PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Shetty D, Khedkar JK, Park KM et al (2015) Can we beat the biotin–avidin pair? Cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. Chem Soc Rev 44:8747–8761PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kim KL, Sung G, Sim J et al (2018) Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging. Nat Commun 9:1712PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Mapp AK, Ansari AZ, Ptashne M et al (2000) Activation of gene expression by small molecule transcription factors. Proc Natl Acad Sci U S A 97:3930–3935PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Pandian GN, Sugiyama H (2016) Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids. Bull Chem Soc Jpn 89:843–868CrossRefGoogle Scholar
  159. 159.
    Kawamoto Y, Bando T, Kamada F et al (2013) Development of a new method for synthesis of tandem hairpin pyrrole-imidazole polyamide probes targeting human telomeres. J Am Chem Soc 135:16468–16477PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Poulin-Kerstien AT, Dervan PB (2003) DNA-templated dimerization of hairpin polyamides. J Am Chem Soc 125:15811–15821PubMedCrossRefGoogle Scholar
  161. 161.
    Weyermann P, Dervan PB (2002) Recognition of ten base pairs of DNA by head-to-head hairpin dimers. J Am Chem Soc 124:6872–6878PubMedCrossRefGoogle Scholar
  162. 162.
    Liu K, Fang L, Sun H et al (2018) Targeting polo-like kinase 1 by a novel pyrrole-imidazole polyamide-hoechst conjugate suppresses tumor growth in vivo. Mol Cancer Ther 17:988–1002PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Vázquez ME, Caamaño AM, Martínez-Costas J et al (2001) Design and synthesis of a peptide that binds specific DNA sequences through simultaneous interaction in the major and in the minor groove. Angew Chem Int Ed Engl 40:4723–4725PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Kameshima W, Ishizuka T, Minoshima M et al (2013) Conjugation of peptide nucleic acid with a pyrrole/imidazole polyamide to specifically recognize and cleave DNA. Angew Chem Int Ed Engl 52:13681–13684PubMedCrossRefGoogle Scholar
  165. 165.
    Obata S, Asamitsu S, Hashiya K et al (2018) G-quadruplex induction by the hairpin pyrrole-imidazole polyamide dimer. Biochemistry 57:498–502PubMedCrossRefGoogle Scholar
  166. 166.
    Asamitsu S, Obata S, Yu Z et al (2019) Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules 24:429PubMedCentralCrossRefPubMedGoogle Scholar
  167. 167.
    Matharu N, Rattanasopha S, Tamura S et al (2019) CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363:eaau0629Google Scholar
  168. 168.
    Garriga-Canut M, Agustín-Pavón C, Herrmann F et al (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 109:E3136–E3145PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Maeder ML, Linder SJ, Reyon D et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations