Aneesh VR, Mohankumar G, Sampath S (2008) Spatial distribution of atmospheric carbon monoxide over Bay of Bengal and Arabian Sea: measurements during pre-monsoon period of 2006. J Earth Syst Sci 117:449–455. https://doi.org/10.1007/s12040-008-0044-8
CrossRef
Google Scholar
Anil Kumar V, Pandithurai G, Parambil Leena P et al (2016) Investigation of aerosol indirect effects on monsoon clouds using ground-based measurements over a high-altitude site in Western Ghats. Atmos Chem Phys 16:8423–8430. https://doi.org/10.5194/acp-16-8423-2016
CrossRef
Google Scholar
Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29:27-1–27-4. https://doi.org/10.1029/2002GL015826
CrossRef
Google Scholar
Babu SS, Manoj MR, Moorthy KK et al (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res Atmos 118:11794–11806. https://doi.org/10.1002/2013JD020507
CrossRef
Google Scholar
Badarinath KVS, Madhavi Latha K (2006) Direct radiative forcing from black carbon aerosols over urban environment. Adv Sp Res 37:2183–2188. https://doi.org/10.1016/j.asr.2005.10.034
CrossRef
Google Scholar
Beig G, Brasseur GP (2006) Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophys Res Lett 33:1–5. https://doi.org/10.1029/2005GL024949
CrossRef
Google Scholar
Beig G, Singh V (2007) Trends in tropical tropospheric column ozone from satellite data and MOZART model. Geophys Res Lett 34:1–5. https://doi.org/10.1029/2007GL030460
CrossRef
Google Scholar
Bera S, Prabha TV, Malap N et al (2019) Thermodynamics and Microphysics Relation During CAIPEEX-I. Pure Appl Geophys 176:371–388. https://doi.org/10.1007/s00024-018-1942-6
CrossRef
Google Scholar
Bharali C, Pathak B, Bhuyan PK (2015) Spring and summer night-time high ozone episodes in the upper Brahmaputra valley of North East India and their association with lightning. Atmos Environ 109:234–250. https://doi.org/10.1016/j.atmosenv.2015.03.035
CrossRef
Google Scholar
Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the summer monsoon. Science 80(334):502–505
CrossRef
Google Scholar
Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171
CrossRef
Google Scholar
Brasseur GP, Orlando JJ, Tyndall GS, Atmospheric Research (U.S.) NC (1999) Atmospheric chemistry and global change, topics in environmental chemistry. Oxford University Press, New York
Google Scholar
Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q J R Meteorol Soc 75:351–363. https://doi.org/10.1002/qj.49707532603
CrossRef
Google Scholar
Chalita S, Hauglustaine DA, Le Treut H, Müller JF (1996) Radiative forcing due to increased tropospheric ozone concentrations. Atmos Environ 30:1641–1646. https://doi.org/10.1016/1352-2310(95)00431-9
CrossRef
Google Scholar
Chehade W, Weber M, Burrows JP (2014) Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmos Chem Phys 14:7059–7074. https://doi.org/10.5194/acp-14-7059-2014
CrossRef
Google Scholar
Cionni I, Eyring V, Lamarque JF et al (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11267–11292. https://doi.org/10.5194/acp-11-11267-2011
CrossRef
Google Scholar
Dani KK, Ernest Raj P, Devara PCS et al (2012) Long-term trends and variability in measured multi-spectral aerosol optical depth over a tropical urban station in India. Int J Climatol 32:153–160. https://doi.org/10.1002/joc.2250
CrossRef
Google Scholar
Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7:17347. https://doi.org/10.1038/s41598-017-17599-1
CrossRef
Google Scholar
Dey S, Di Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:1–5. https://doi.org/10.1029/2011GL048153
CrossRef
Google Scholar
Dobson GMB (1956) Origin and distribution of the polyatomic molecules in the atmosphere. Proc R Soc London Ser A Math Phys Sci 236:187–193. https://doi.org/10.1098/rspa.1956.0127
CrossRef
Google Scholar
Duchi R, Cristofanelli P, Marinoni A et al (2014) Synoptic-scale dust transport events in the southern Himalaya. Aeolian Res 13:51–57. https://doi.org/10.1016/j.aeolia.2014.03.008
CrossRef
Google Scholar
Eyring V, Arblaster JM, Cionni I et al (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res Atmos 118:5029–5060. https://doi.org/10.1002/jgrd.50316
CrossRef
Google Scholar
Fadnavis S, Chattopadhyay R (2017) Linkages of subtropical stratospheric intraseasonal intrusions with Indian summer monsoon deficit rainfall. J Clim 30:5083–5095. https://doi.org/10.1175/JCLI-D-16-0463.1
CrossRef
Google Scholar
Fadnavis S, Beig G, Polade SD (2008) Features of ozone quasi-biennial oscillation in the vertical structure of tropics and subtropics. Meteorol Atmos Phys 99:221–231. https://doi.org/10.1007/s00703-007-0270-7
CrossRef
Google Scholar
Fadnavis S, Chakraborty T, Beig G (2010) Seasonal stratospheric intrusion of ozone in the upper troposphere over India. Ann Geophys 28:2149–2159. https://doi.org/10.5194/angeo-28-2149-2010
CrossRef
Google Scholar
Fadnavis S, Chakraborty T, Ghude SD et al (2011) Modulation of cyclone tracks in the Bay of Bengal by QBO. J Atmos Solar-Terr Phys 73:1868–1875. https://doi.org/10.1016/j.jastp.2011.04.014
CrossRef
Google Scholar
Fadnavis S, Semeniuk K, Pozzoli L et al (2013) Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation. Atmos Chem Phys 13:8771–8786. https://doi.org/10.5194/acp-13-8771-2013
CrossRef
Google Scholar
Fadnavis S, Dhomse S, Ghude S et al (2014a) Ozone trends in the vertical structure of upper troposphere and lower stratosphere over the Indian monsoon region. Int J Environ Sci Technol 11:529–542. https://doi.org/10.1007/s13762-013-0258-4
CrossRef
Google Scholar
Fadnavis S, Ernest Raj P, Buchunde P, Goswami BN (2014b) In search of influence of stratospheric quasi-biennial oscillation on tropical cyclones tracks over the Bay of Bengal region. Int J Climatol 34:567–580. https://doi.org/10.1002/joc.3706
CrossRef
Google Scholar
Fadnavis S, Semeniuk K, Schultz MG et al (2015) Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season. Atmos Chem Phys 15:11477–11499. https://doi.org/10.5194/acp-15-11477-2015
CrossRef
Google Scholar
Fadnavis S, Kalita G, Ravi Kumar K et al (2017) Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation. Atmos Chem Phys 17:11637–11654. https://doi.org/10.5194/acp-17-11637-2017
CrossRef
Google Scholar
Fadnavis S, Sabin TP, Roy C et al (2019) Elevated aerosol layer over South Asia worsens the Indian droughts. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-46704-9
CrossRef
Google Scholar
Fairlie TD, Vernier JP, Natarajan M, Bedka KM (2014) Dispersion of the Nabro volcanic plume and its relation to the Asian summer monsoon. Atmos Chem Phys 14:7045–7057. https://doi.org/10.5194/acp-14-7045-2014
CrossRef
Google Scholar
Fiedler S, Stevens B, Gidden M et al (2019) First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geosci Model Dev 12:989–1007. https://doi.org/10.5194/gmd-12-989-2019
CrossRef
Google Scholar
Forster PM, Shine KP (1997) Radiative forcing and temperature trends from stratospheric ozone changes. J Geophys Res Atmos 102:10841–10855. https://doi.org/10.1029/96jd03510
CrossRef
Google Scholar
Fu R, Hu Y, Wright JS et al (2006) Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc Natl Acad Sci 103:5664–5669. https://doi.org/10.1073/pnas.0601584103
CrossRef
Google Scholar
Gaddis AL (2013) Evaluating predictability in the community earth system model in response to the eruption of Mount Pinatubo. University of Tennessee
Google Scholar
Ganguly D, Jayaraman A (2006) Physical and optical properties of aerosols over an urban location in western India: implications for shortwave radiative forcing. J Geophys Res 111:D24207. https://doi.org/10.1029/2006JD007393
CrossRef
Google Scholar
Ganguly D, Gadhavi H, Jayaraman A et al (2005) Single scattering albedo of aerosols over the central India: implications for the regional aerosol radiative forcing. Geophys Res Lett 32:1–4. https://doi.org/10.1029/2005GL023903
CrossRef
Google Scholar
Ganguly D, Rasch PJ, Wang H, Yoon JH (2012) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res Atmos 117:1–20. https://doi.org/10.1029/2012JD017508
CrossRef
Google Scholar
Garg A, Shukla PR, Kapshe M (2006) The sectoral trends of multigas emissions inventory of India. Atmos Environ 40:4608–4620. https://doi.org/10.1016/j.atmosenv.2006.03.045
CrossRef
Google Scholar
Gautam R, Hsu NC, Lau WKM, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. Geophys Res Lett 40:988–993. https://doi.org/10.1002/grl.50226
CrossRef
Google Scholar
Gayatri K, Patade S, Prabha TV (2017) Aerosol-cloud interaction in deep convective clouds over the Indian Peninsula using spectral (bin) microphysics. J Atmos Sci 74:3145–3166. https://doi.org/10.1175/JAS-D-17-0034.1
CrossRef
Google Scholar
Gertler CG, Puppala SP, Panday A et al (2016) Black carbon and the Himalayan cryosphere: a review. Atmos Environ 125:404–417. https://doi.org/10.1016/j.atmosenv.2015.08.078
CrossRef
Google Scholar
Ghude SD, Fadnavis S, Beig G et al (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res Atmos 113:1–13. https://doi.org/10.1029/2007JD009615
CrossRef
Google Scholar
Ghude SD, Kulkarni SH, Jena C et al (2013a) Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian subcontinent. J Geophys Res Atmos 118:1075–1089. https://doi.org/10.1029/2012JD017811
CrossRef
Google Scholar
Ghude SD, Pfister GG, Jena C et al (2013b) Satellite constraints of nitrogen oxide (NOx) emissions from India based on OMI observations and WRF-Chem simulations. Geophys Res Lett 40:423–428. https://doi.org/10.1029/2012GL053926
CrossRef
Google Scholar
Gidden MJ, Riahi K, Smith SJ et al (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475. https://doi.org/10.5194/gmd-12-1443-2019
CrossRef
Google Scholar
Girach IA, Ojha N, Nair PR et al (2017) Variations in O3, CO, and CH4 over the Bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. Atmos Chem Phys 17:257–275. https://doi.org/10.5194/acp-17-257-2017
CrossRef
Google Scholar
Gogoi MM, Babu SS, Jayachandran V et al (2015) Optical properties and CCN activity of aerosols in a high-altitude Himalayan environment: results from RAWEX-GVAX. J Geophys Res 120:2453–2469. https://doi.org/10.1002/2014JD022966
CrossRef
Google Scholar
Guenther A, Karl T, Harley P et al (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210. https://doi.org/10.5194/acpd-6-107-2006
CrossRef
Google Scholar
Guo L, Turner AG, Highwood EJ (2015) Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models. Atmos Chem Phys 15:6367–6378. https://doi.org/10.5194/acp-15-6367-2015
CrossRef
Google Scholar
Harikishan G, Padmakumari B, Maheskumar RS et al (2016) Aerosol indirect effects from ground-based retrievals over the rain shadow region in Indian subcontinent. J Geophys Res 121:1–14. https://doi.org/10.1002/2015JD024577
CrossRef
Google Scholar
Hazra A, Goswami BN, Chen JP (2013) Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70:2073–2087. https://doi.org/10.1175/JAS-D-12-0179.1
CrossRef
Google Scholar
Hommel R, Timmreck C, Giorgetta MA, Graf HF (2015) Quasi-biennial oscillation of the tropical stratospheric aerosol layer. Atmos Chem Phys 15:5557–5584. https://doi.org/10.5194/acp-15-5557-2015
CrossRef
Google Scholar
Hsu NC, Gautam R, Sayer AM et al (2012) Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos Chem Phys 12:8037–8053. https://doi.org/10.5194/acp-12-8037-2012
CrossRef
Google Scholar
IPCC (2013) Fifth assessment report of the intergovernmental panel on climate change (IPCC)
Google Scholar
Jacobi HW, Lim S, Ménégoz M et al (2015) Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing. Cryosphere 9:1685–1699. https://doi.org/10.5194/tc-9-1685-2015
CrossRef
Google Scholar
Jena C, Ghude SD, Beig G et al (2015) Inter-comparison of different NOx emission inventories and associated variation in simulated surface ozone in Indian region. Atmos Environ 117:61–73. https://doi.org/10.1016/j.atmosenv.2015.06.057
CrossRef
Google Scholar
Joseph R, Zeng N (2011) Seasonally modulated tropical drought induced by volcanic aerosol. J Clim 24:2045–2060. https://doi.org/10.1175/2009JCLI3170.1
CrossRef
Google Scholar
Kaskaoutis DG, Singh RP, Gautam R et al (2012) Variability and trends of aerosol properties over Kanpur, northern India using AERONET data (2001–10). Environ Res Lett 7(2):024003. https://doi.org/10.1088/1748-9326/7/2/024003
CrossRef
Google Scholar
Kaspari S, Painter TH, Gysel M et al (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phys 14:8089–8103. https://doi.org/10.5194/acp-14-8089-2014
CrossRef
Google Scholar
Kavitha MP, Nair R, Renju R (2018) Thunderstorm induced changes in near-surface O3, NOx and CH4 and associated boundary layer meteorology over a tropical coastal station. J Atmos Solar Terr Phys 179. https://doi.org/10.1016/j.jastp.2018.08.008
Konwar M, Maheskumar RS, Kulkarni JR et al (2012) Aerosol control on depth of warm rain in convective clouds. J Geophys Res Atmos 117:1–10. https://doi.org/10.1029/2012JD017585
CrossRef
Google Scholar
Kopacz M, Mauzerall DL, Wang J et al (2011) Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau. Atmos Chem Phys 11:2837–2852. https://doi.org/10.5194/acp-11-2837-2011
CrossRef
Google Scholar
Krishna Moorthy K, Suresh Babu S, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian Region. Geophys Res Lett 40:1011–1014. https://doi.org/10.1002/grl.50165
CrossRef
Google Scholar
Krishnamurti TN, Jha B, Prospero J et al (1998) Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian Ocean during the January–February 1996 pre-INDOEX cruise. Tellus, Ser B Chem Phys Meteorol 50:521–542. https://doi.org/10.3402/tellusb.v50i5.16235
CrossRef
Google Scholar
Krishnan R, Ramanathan V (2002) Evidence of surface cooling from absorbing aerosols. Geophys Res Lett 29:54-1–54-4. https://doi.org/10.1029/2002gl014687
CrossRef
Google Scholar
Krishnan R, Sabin TP, Vellore R et al (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47:1007–1027. https://doi.org/10.1007/s00382-015-2886-5
CrossRef
Google Scholar
Kulkarni JR, Maheskumar RS, Morwal SB et al (2012) The cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX): overview and preliminary results. Curr Sci 102:413–425
Google Scholar
Lal DM, Ghude SD, Patil SD et al (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos Res 116:82–92. https://doi.org/10.1016/j.atmosres.2012.02.014
CrossRef
Google Scholar
Lal S, Venkataramani S, Srivastava S et al (2013) Transport effects on the vertical distribution of tropospheric ozone over the tropical marine regions surrounding India. J Geophys Res Atmos 118:1513–1524. https://doi.org/10.1002/jgrd.50180
CrossRef
Google Scholar
Lal S, Venkataramani S, Chandra N et al (2014) Transport effects on the vertical distribution of tropospheric ozone over western India. J Geophys Res 119:n/a. https://doi.org/10.1002/2014JD021854
CrossRef
Google Scholar
Lal S, Peshin SK, Naja M, Venkataramani S (2017) Variability of ozone and related trace gases over India. In: Rajeevan MN, Nayak S (eds) Observed climate variability and change over the Indian region. Springer geology. Springer, Singapore
Google Scholar
Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:1–5. https://doi.org/10.1029/2006GL027546
CrossRef
Google Scholar
Lau WKM, Kim KM (2010) Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL043255
CrossRef
Google Scholar
Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z
CrossRef
Google Scholar
Lau WKM, Yuan C, Li Z (2018) Origin, maintenance and variability of the Asian tropopause aerosol layer (ATAL): the roles of monsoon dynamics. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-22267-z
CrossRef
Google Scholar
Leena PP, Anilkumar V, Sravanthi N et al (2018) On the precipitation susceptibility of monsoon clouds to aerosols using high-altitude ground-based observations over Western Ghats, India. Atmos Environ 185:128–136. https://doi.org/10.1016/j.atmosenv.2018.05.001
CrossRef
Google Scholar
Logan JA, Staehelin J, Megretskaia IA et al (2012) Changes in ozone over Europe: analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J Geophys Res Atmos 117:1–23. https://doi.org/10.1029/2011JD016952
CrossRef
Google Scholar
Lu X, Zhang L, Liu X et al (2018) Lower tropospheric ozone over India and its linkage to the South Asian monsoon. Atmos Chem Phys 18:3101–3118. https://doi.org/10.5194/acp-18-3101-2018
CrossRef
Google Scholar
Mahajan AS, De Smedt I, Biswas MS et al (2015) Inter-annual variations in satellite observations of nitrogen dioxide and formaldehyde over India. Atmos Environ 116:194–201. https://doi.org/10.1016/j.atmosenv.2015.06.004
CrossRef
Google Scholar
Manoj MR, Satheesh SK, Moorthy KK et al (2019) Decreasing trend in black carbon aerosols over the Indian region. Geophys Res Lett 46:2903–2910. https://doi.org/10.1029/2018GL081666
CrossRef
Google Scholar
McConnell JR, Burke A, Dunbar NW et al (2017) Synchronous volcanic eruptions and abrupt climate change ~17.7 ka plausibly linked by stratospheric ozone depletion. Proc Natl Acad Sci 114:10035–10040. https://doi.org/10.1073/pnas.1705595114
CrossRef
Google Scholar
Misra A, Kanawade VP, Tripathi SN (2016) Quantitative assessment of AOD from 17 CMIP5 models based on satellite-derived AOD over India. Ann Geophys 34:657–671. https://doi.org/10.5194/angeo-34-657-2016
CrossRef
Google Scholar
Müller S, Hoor P, Bozem H et al (2016) Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012. Atmos Chem Phys 16:10573–10589. https://doi.org/10.5194/acp-16-10573-2016
CrossRef
Google Scholar
Naik V, Mauzerall D, Horowitz L et al (2005) Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors. J Geophys Res Atmos 110:1–14. https://doi.org/10.1029/2005JD005908
CrossRef
Google Scholar
Nair S, Sanjay J, Pandithurai G et al (2012) On the parameterization of cloud droplet effective radius using CAIPEEX aircraft observations for warm clouds in India. Atmos Res 108:104–114. https://doi.org/10.1016/j.atmosres.2012.02.002
CrossRef
Google Scholar
Nair VS, Babu SS, Manoj MR et al (2016) Direct radiative effects of aerosols over South Asia from observations and modeling. Clim Dyn 49:1411–1428. https://doi.org/10.1007/s00382-016-3384-0
CrossRef
Google Scholar
Nair PR, Ajayakumar RS, David LM et al (2018) Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542° N, 76.858° E), India: effects of anthropogenic activities and meteorological variability. Environ Sci Pollut Res 25:14827–14843. https://doi.org/10.1007/s11356-018-1695-x
CrossRef
Google Scholar
Naja M, Lal S (1996) Changes in surface ozone amount and its diurnal and seasonal patterns, from 1954-55 to 1991-93, measured at Ahmedabad (23 N), India. Geophys Res Lett 23:81–84
CrossRef
Google Scholar
Ohba M, Shiogama H, Yokohata T, Watanabe M (2013) Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled gcm. J Clim 26:5169–5182. https://doi.org/10.1175/JCLI-D-12-00471.1
CrossRef
Google Scholar
Padmakumari B, Maheskumar RS, Harikishan G et al (2013) In situ measurements of aerosol vertical and spatial distributions over continental India during the major drought year 2009. Atmos Environ 80:107–121. https://doi.org/10.1016/j.atmosenv.2013.07.064
CrossRef
Google Scholar
Pan X, Chin M, Gautam R et al (2015) A multi-model evaluation of aerosols over South Asia: common problems and possible causes. Atmos Chem Phys 15:5903–5928. https://doi.org/10.5194/acp-15-5903-2015
CrossRef
Google Scholar
Pandey A, Sadavarte P, Rao AB, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmos Environ 99:341–352. https://doi.org/10.1016/j.atmosenv.2014.09.080
CrossRef
Google Scholar
Pandey SK, Vinoj V, Landu K, Babu SS (2017) Declining pre-monsoon dust loading over South Asia: signature of a changing regional climate. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-16338-w
CrossRef
Google Scholar
Pandithurai G, Dipu S, Dani KK et al (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res Atmos 113:1–13. https://doi.org/10.1029/2008JD009804
CrossRef
Google Scholar
Pandithurai G, Dipu S, Prabha T V et al (2012) Aerosol effect on droplet spectral dispersion in warm continental cumuli. J Geophys Res Atmos 117. https://doi.org/10.1029/2011JD016532
Panicker AS, Pandithurai G, Dipu S (2010) Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data. Atmos Environ 44:1937–1943. https://doi.org/10.1016/j.atmosenv.2010.02.015
CrossRef
Google Scholar
Patade S, Nagare B, Wagh S et al (2014) Deposition ice nuclei observations over the Indian region during CAIPEEX. Atmos Res 149:300–314. https://doi.org/10.1016/j.atmosres.2014.07.001
CrossRef
Google Scholar
Pathak B, Subba T, Dahutia P et al (2016) Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements. Atmos Environ 125:461–473. https://doi.org/10.1016/j.atmosenv.2015.07.038
CrossRef
Google Scholar
Pathakoti M, Asuri LK, Venkata MD et al (2018) Assessment of total columnar ozone climatological trends over the Indian sub-continent. Int J Remote Sens 39:3963–3982. https://doi.org/10.1080/01431161.2018.1452066
CrossRef
Google Scholar
Prabha TV and Khain A (2020) Water vapor and pollutants, aerosol–cloud interactions. In: Patricia A. Maurice (ed) Encyclopedia of water: science, technology and society. https://doi.org/10.1002/9781119300762.wsts0093
Prabha TV, Patade S, Pandithurai G et al (2012) Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J Geophys Res Atmos 117:1–15. https://doi.org/10.1029/2011JD016837
CrossRef
Google Scholar
Pu B, Ginoux P (2018) How reliable are CMIP5 models in simulating dust optical depth? Atmos Chem Phys 18:12491–12510. https://doi.org/10.5194/acp-18-12491-2018
CrossRef
Google Scholar
Rai P, Dimri AP (2017) Effect of changing tropical easterly jet, low level jet and quasi-biennial oscillation phases on Indian summer monsoon. Atmos Sci Lett 18:52–59. https://doi.org/10.1002/asl.723
CrossRef
Google Scholar
Raj STA, Venkat Ratnam M, Narayana Rao D, Krishna Murthy BV (2018) Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region. Ann Geophys 36:149–165. https://doi.org/10.5194/angeo-36-149-2018
CrossRef
Google Scholar
Ramachandran S, Rengarajan R, Jayaraman A et al (2006) Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India. J Geophys Res Atmos 111:1–12. https://doi.org/10.1029/2006JD007142
CrossRef
Google Scholar
Ramachandran S, Kedia S, Srivastava R (2012) Aerosol optical depth trends over different regions of India. Atmos Environ 49:338–347. https://doi.org/10.1016/j.atmosenv.2011.11.017
CrossRef
Google Scholar
Ramanathan V, Chung C, Kim D et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci U S A 102:5326–5333. https://doi.org/10.1073/pnas.0500656102
CrossRef
Google Scholar
Rana A, Jia S, Sarkar S (2019) Black carbon aerosol in India: a comprehensive review of current status and future prospects. Atmos Res 218:207–230. https://doi.org/10.1016/j.atmosres.2018.12.002
CrossRef
Google Scholar
Ravi Kiran V, Talukdar S, Venkat Ratnam M, Jayaraman A (2018) Long-term observations of black carbon aerosol over a rural location in southern peninsular India: role of dynamics and meteorology. Atmos Environ 189:264–274. https://doi.org/10.1016/j.atmosenv.2018.06.020
CrossRef
Google Scholar
Reddy MS, Boucher O, Venkataraman C et al (2004) General circulation model estimates of aerosol transport and radiative forcing during the Indian Ocean Experiment. J Geophys Res Atmos 109:1–15. https://doi.org/10.1029/2004JD004557
CrossRef
Google Scholar
Robock A (2015) Important research questions on volcanic eruptions and climate. PAGES Mag 23. https://doi.org/10.22498/pages.23.2.68
Roy C, Fadnavis S, Müller R et al (2017) Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry-climate model simulations. Atmos Chem Phys 17:1297–1311. https://doi.org/10.5194/acp-17-1297-2017
CrossRef
Google Scholar
Sadavarte P, Venkataraman C (2014) Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos Environ 99:353–364. https://doi.org/10.1016/j.atmosenv.2014.09.081
CrossRef
Google Scholar
Sahai S, Sharma C, Singh DP et al (2007) A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmos Environ 41:9173–9186. https://doi.org/10.1016/j.atmosenv.2007.07.054
CrossRef
Google Scholar
Sahu SK, Beig G, Sharma C (2008) Decadal growth of black carbon emissions in India. Geophys Res Lett 35:1–5. https://doi.org/10.1029/2007GL032333
CrossRef
Google Scholar
Sahu LK, Sheel V, Kajino M et al (2014) Seasonal and interannual variability of tropospheric ozone over an urban site in India: a study based on MOZAIC and CCM vertical profiles over Hyderabad. J Geophys Res Atmos 119:3615–3641. https://doi.org/10.1002/2013JD021215
CrossRef
Google Scholar
Sahu BS, Tandon A, Attri AK (2017) Roles of ozone depleting substances and solar activity in observed long-term trends in total ozone column over Indian region. Int J Remote Sens 38:5091–5105. https://doi.org/10.1080/01431161.2017.1333654
CrossRef
Google Scholar
Samanta D, Dash MK, Goswami BN, Pandey PC (2016) Extratropical anticyclonic Rossby wave breaking and Indian summer monsoon failure. Clim Dyn 46:1547–1562. https://doi.org/10.1007/s00382-015-2661-7
CrossRef
Google Scholar
Sanap SD, Pandithurai G (2015) The effect of absorbing aerosols on Indian monsoon circulation and rainfall: a review. Atmos Res 164–165:318–327. https://doi.org/10.1016/j.atmosres.2015.06.002
CrossRef
Google Scholar
Sanap SD, Ayantika DC, Pandithurai G, Niranjan K (2014) Assessment of the aerosol distribution over Indian subcontinent using CMIP5 models. Atmos Environ, 123–137 (in press)
Google Scholar
Sanap SD, Pandithurai G, Manoj MG (2015) On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations. Clim Dyn 45:2949–2961. https://doi.org/10.1007/s00382-015-2516-2
CrossRef
Google Scholar
Santer BD, Wehner MF, Wigley TML et al (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 80-(301):479–483. https://doi.org/10.1126/science.1084123
CrossRef
Google Scholar
Saraf N, Beig G (2004) Long-term trends in tropospheric ozone over the Indian tropical region. Geophys Res Lett 31:n/a. https://doi.org/10.1029/2003GL018516
CrossRef
Google Scholar
Sarkar C, Roy A, Chatterjee A et al (2019) Factors controlling the long-term (2009–2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India. Sci Total Environ 656:280–296. https://doi.org/10.1016/j.scitotenv.2018.11.367
CrossRef
Google Scholar
Satheesh S, Babu S, Padmakumari B et al (2017) Variability of atmospheric aerosols over India, pp 221–248
Google Scholar
Saud T, Gautam R, Mandal TK et al (2012) Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmos Environ 61:212–220. https://doi.org/10.1016/j.atmosenv.2012.07.030
CrossRef
Google Scholar
Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53. https://doi.org/10.1038/nature13636
CrossRef
Google Scholar
Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7:3823–3907. https://doi.org/10.5194/acp-7-3823-2007
CrossRef
Google Scholar
Sharma S, Goel A, Gupta D et al (2015) Emission inventory of non-methane volatile organic compounds from anthropogenic sources in India. Atmos Environ 102:209–219. https://doi.org/10.1016/j.atmosenv.2014.11.070
CrossRef
Google Scholar
Shindell DT, Lamarque JF, Schulz M et al (2013) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys 13:2939–2974. https://doi.org/10.5194/acp-13-2939-2013
CrossRef
Google Scholar
Singh R, Sharma C, Agrawal M (2017) Emission inventory of trace gases from road transport in India. Transp Res Part D Transp Environ 52:64–72. https://doi.org/10.1016/j.trd.2017.02.011
CrossRef
Google Scholar
Singla V, Mukherjee S, Safai PD et al (2017) Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India. Atmos Environ 158:148–159. https://doi.org/10.1016/j.atmosenv.2017.03.037
CrossRef
Google Scholar
Sinha A, Berkelhammer M, Stott L et al (2011) The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys Res Lett 38:2–6. https://doi.org/10.1029/2011GL047713
CrossRef
Google Scholar
Sinha V, Kumar V, Sarkar C (2014) Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning. Atmos Chem Phys 14:5921–5941. https://doi.org/10.5194/acp-14-5921-2014
CrossRef
Google Scholar
Soni VK, Pandithurai G, Pai DS (2012) Evaluation of long-term changes of solar radiation in India. Int J Climatol 32:540–551. https://doi.org/10.1002/joc.2294
CrossRef
Google Scholar
Soni VK, Pandithurai G, Pai DS (2016) Is there a transition of solar radiation from dimming to brightening over India? Atmos Res 169:209–224. https://doi.org/10.1016/j.atmosres.2015.10.010
CrossRef
Google Scholar
Srivastava R (2017) Trends in aerosol optical properties over South Asia. Int J Climatol 37:371–380. https://doi.org/10.1002/joc.4710
CrossRef
Google Scholar
Streets DG, Bond TC, Carmichael GR et al (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res Atmos 108. https://doi.org/10.1029/2002jd003093
Streets DG, Shindell DT, Lu Z, Faluvegi G (2013) Radiative forcing due to major aerosol emitting sectors in China and India. Geophys Res Lett 40:4409–4414. https://doi.org/10.1002/grl.50805
CrossRef
Google Scholar
Tabazadeh A, Drdla K, Schoeberl MR et al (2002) Arctic ozone hole in a cold volcanic stratosphere. Proc Natl Acad Sci U S A 99:2609–2612. https://doi.org/10.1073/pnas.052518199
CrossRef
Google Scholar
Tandon A, Attri AK (2011) Trends in total ozone column over India: 1979–2008. Atmos Environ 45:1648–1654. https://doi.org/10.1016/j.atmosenv.2011.01.008
CrossRef
Google Scholar
Tie XX, Brasseur G (1995) The response of stratospheric ozone to volcanic eruptions: sensitivity to atmospheric chlorine loading. Geophys Res Lett 22:3035–3038. https://doi.org/10.1029/95GL03057
CrossRef
Google Scholar
Ul-Haq Z, Rana AD, Ali M et al (2015) Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Adv Sp Res 56:583–595. https://doi.org/10.1016/j.asr.2015.04.026
CrossRef
Google Scholar
Undorf S, Polson D, Bollasina MA et al (2018) Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian Monsoon precipitation. J Geophys Res Atmos 123:4871–4889. https://doi.org/10.1029/2017JD027711
CrossRef
Google Scholar
Varghese M, Prabha TV, Malap N et al (2016) Airborne and ground based CCN spectral characteristics: inferences from CAIPEEX—2011. Atmos Environ 125:324–336. https://doi.org/10.1016/j.atmosenv.2015.06.041
CrossRef
Google Scholar
Venkanna R, Nikhil GN, Sinha PR et al (2016) Role of lightning phenomenon over surface O3 and NOx at a semi-arid tropical site Hyderabad, India: inter-comparison with satellite retrievals. Theor Appl Climatol 125:691–701. https://doi.org/10.1007/s00704-015-1538-3
CrossRef
Google Scholar
Venkataraman C, Chandramouli B, Patwardhan A (1999) Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing. Atmos Environ 33:3225–3235. https://doi.org/10.1016/S1352-2310(98)00140-X
CrossRef
Google Scholar
Venkataraman C, Habib G, Eiguren-Fernandez A et al (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 80-(307):1454–1456. https://doi.org/10.1126/science.1104359
CrossRef
Google Scholar
Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem Cycles 20:1–12. https://doi.org/10.1029/2005GB002547
CrossRef
Google Scholar
Verma S, Venkataraman C, Boucher O (2011) Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmos Environ 45:4398–4407. https://doi.org/10.1016/j.atmosenv.2011.05.048
CrossRef
Google Scholar
Verma S, Boucher O, Shekar Reddy M et al (2012) Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: a GCM study. Atmos Chem Phys 12:6185–6196. https://doi.org/10.5194/acp-12-6185-2012
CrossRef
Google Scholar
Verma S, Boucher O, Upadhyaya HC, Sharma OP (2013) Variations in sulphate aerosols concentration during winter monsoon season for two consecutive years using a general circulation model. Atmosfera 26:359–367. https://doi.org/10.1016/S0187-6236(13)71082-8
CrossRef
Google Scholar
Vernier JP et al (2009) Tropical stratospheric aerosol layer from CALIPSO lidar observations. J Geophys Res 114, D00H10. https://doi.org/10.1029/2009JD011946
Vernier JP, Fairlie TD, Natarajan M et al (2015) Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J Geophys Res 120:1608–1619. https://doi.org/10.1002/2014JD022372
CrossRef
Google Scholar
Vernier JP, Fairlie TD, Deshler T et al (2018) BATAL: the balloon measurement campaigns of the Asian tropopause aerosol layer. Bull Am Meteorol Soc 99:955–973. https://doi.org/10.1175/BAMS-D-17-0014.1
CrossRef
Google Scholar
Vinoj V, Rasch PJ, Wang H et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7:308–313. https://doi.org/10.1038/ngeo2107
CrossRef
Google Scholar
von Glasow R, Bobrowski N, Kern C (2009) The effects of volcanic eruptions on atmospheric chemistry. Chem Geol 263:131–142. https://doi.org/10.1016/j.chemgeo.2008.08.020
CrossRef
Google Scholar
WMO (2019a) Scientific assessment of ozone depletion: 2014 global ozone research and monitoring project—report no. 55
Google Scholar
WMO (2019b) Scientific assessment of ozone depletion: 2018 world meteorological organization global ozone research and monitoring project-report no. 58. World Meteorological Organization United Nations Environment Programme National Oceanic and Atmospheric Administration
Google Scholar
Xu B, Cao J, Hansen J et al (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106:22114–22118. https://doi.org/10.1073/pnas.0910444106
CrossRef
Google Scholar
Yarragunta Y, Srivastava S, Mitra D (2017) Validation of lower tropospheric carbon monoxide inferred from MOZART model simulation over India. Atmos Res 184:35–47. https://doi.org/10.1016/j.atmosres.2016.09.010
CrossRef
Google Scholar
Yarragunta Y, Srivastava S, Mitra D, Chandola HC (2018) Seasonal and spatial variability of ozone inferred from global chemistry transport model simulations over India. ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV 5:375–381. https://doi.org/10.5194/isprs-annals-IV-5-375-2018
CrossRef
Google Scholar
Young PJ, Archibald AT, Bowman KW et al (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:2063–2090. https://doi.org/10.5194/acp-13-2063-2013
CrossRef
Google Scholar
Zambri B, LeGrande AN, Robock A, Slawinska J (2017) Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J Geophys Res 122:7971–7989. https://doi.org/10.1002/2017JD026728
CrossRef
Google Scholar
Zvyagintsev AM, Vargin PN, Peshin S (2015) Total ozone variations and trends during the period 1979–2014. Atmos Ocean Opt 28:575–584. https://doi.org/10.1134/S1024856015060196
CrossRef
Google Scholar