Skip to main content

A Cost-Effective Data Node Management Scheme for Hadoop Clusters in Cloud Environment

  • Conference paper
  • First Online:
Machine Learning and Metaheuristics Algorithms, and Applications (SoMMA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1203))

Abstract

MapReduce framework in Hadoop is used to analyze the large set of data in a distributed storage system. MapReduce jobs are designate to the task node to perform the map-reduce operation based upon the scheduler. Each node has slots (virtual core) to process a task using the map and reduce operation. Map tasks done separately prior to the Reduce task. The different execution order of jobs and different slot configuration in the clusters affect the CPU performance significantly. In this paper, we have stated effective DataNode assignment techniques for resource allocation in the Hadoop MapReduce job. We performed various operations on Amazon EC2 and physical machine to demonstrate that our proposed technique helps to choose optimized node selection for assignment of DataNodes in the Hadoop cluster. This significantly scales down the cost of the node and increases the job execution performance in the Hadoop cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. Apache hadoop releases. http://www.hadoop.apache.org/releases.html. Accessed 11 Feb 2018

  3. Singh, N., Agrawal, S.: A review of research on mapreduce scheduling algorithms in Hadoop. In: 2015 International Conference on Computing, Communication & Automation (ICCCA), pp. 637–642. IEEE (2015)

    Google Scholar 

  4. Gautam, J.V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S.: A survey on job scheduling algorithms in big data processing. In: 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–11. IEEE (2015)

    Google Scholar 

  5. Ghazi, M.R., Gangodkar, D.: Hadoop, mapreduce and HDFS: a developers perspective. Proc. Comput. Sci. 48, 45–50 (2015)

    Article  Google Scholar 

  6. Bok, K., Hwang, J., Lim, J., Kim, Y., Yoo, J.: An efficient mapreduce scheduling scheme for processing large multimedia data. Multimed. Tools Appl. 76(16), 17273–17296 (2017)

    Article  Google Scholar 

  7. Demchenko, Y., Ngo, C., Membrey, P.: Architecture framework and components for the big data ecosystem. J. Syst. Netw. Eng. 49(7), 1–31 (2013)

    Google Scholar 

  8. Pastorelli, M., Carra, D., Dell’Amico, M., Michiardi, P.: HFSP: bringing size-based scheduling to hadoop. IEEE Trans. Cloud Comput. 5(1), 43–56 (2017)

    Article  Google Scholar 

  9. Mavridis, I., Karatza, H.: Performance evaluation of cloud-based log file analysis with apache hadoop and apache spark. J. Syst. Softw. 125, 133–151 (2017)

    Article  Google Scholar 

  10. Apache hadoop file system. http://www.hadoop.apache.org/hdfs. Accessed 11 Feb 2018

  11. Afrati, F., Dolev, S., Korach, E., Sharma, S., Ullman, J.D.: Assignment problems of different-sized inputs in mapreduce. ACM Trans. Knowl. Disc. Data (TKDD) 11(2), 18 (2016)

    Google Scholar 

  12. Mathiya, B.J., Desai, V.L.: Apache hadoop yarn parameter configuration challenges and optimization. In: 2015 International Conference on Soft-Computing and Networks Security (ICSNS), pp. 1–6. IEEE (2015)

    Google Scholar 

  13. Cai, X., Li, F., Li, P., Lei, J., Jia, Z.: SLA-aware energy-efficient scheduling scheme for hadoop yarn. J. Supercomput. 73(8), 3526–3546 (2017)

    Article  Google Scholar 

  14. Anuradha, J., et al.: A brief introduction on big data 5Vs characteristics and hadoop technology. Proc. Comput. Sci. 48, 319–324 (2015)

    Article  Google Scholar 

  15. Suresh, S., Gopalan, N.P.: An optimal task selection scheme for hadoop scheduling. IERI Proc. 10, 70–75 (2014)

    Article  Google Scholar 

  16. Dias, L.S., Ierapetritou, M.G.: Integration of scheduling and control under uncertainties: review and challenges. Chem. Eng. Res. Design 116, 98–113 (2016)

    Article  Google Scholar 

  17. Apache hadoop yarn scheduler. https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/. Accessed 11 Feb 2018

  18. Yoo, D., Sim, K.M.: A comparative review of job scheduling for mapreduce. In: 2011 IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 353–358. IEEE (2011)

    Google Scholar 

  19. Apache hadoop emr. https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop.htm. Accessed 11 Feb 2018

  20. Horton works. https://hortonworks.com. Accessed 11 Feb 2018

  21. Cloudera framework. https://www.cloudera.com/. Accessed 11 Feb 2018

  22. Sarkar, D.: Pro Microsoft HDInsight. Apress, Berkeley (2014)

    Book  Google Scholar 

  23. MAPR framework. https://mapr.com/. Accessed 11 Feb 2018

  24. Tang, S., Lee, B.-S., He, B.: Dynamic job ordering and slot configurations for mapreduce workloads. IEEE Trans. Serv. Comput. 9(1), 4–17 (2016)

    Article  Google Scholar 

  25. Polo, J., et al.: Deadline-based mapreduce workload management. IEEE Trans. Netw. Serv. Manage. 10(2), 231–244 (2013)

    Article  Google Scholar 

  26. Leverich, J., Kozyrakis, C.: On the energy (in) efficiency of hadoop clusters. ACM SIGOPS Oper. Syst. Rev. 44(1), 61–65 (2010)

    Article  Google Scholar 

  27. Zhao, Y., Jie, W., Liu, C.: Dache: a data aware caching for big-data applications using the mapreduce framework. Tsinghua Sci. Technol. 19(1), 39–50 (2014)

    Article  Google Scholar 

  28. Qureshi, N.M.F., Shin, D.R., Siddiqui, I.F., Chowdhry, B.S.: Storage-tag-aware scheduler for hadoop cluster. IEEE Access 5, 13742–13755 (2017)

    Article  Google Scholar 

  29. Wang, X., Shen, D., Yu, G., Nie, T., Kou, Y.: A throughput driven task scheduler for improving mapreduce performance in job-intensive environments. In: 2013 IEEE International Congress on Big Data (BigData Congress), pp. 211–218. IEEE (2013)

    Google Scholar 

  30. Brahmwar, M., Kumar, M., Sikka, G.: Tolhit-a scheduling algorithm for hadoop cluster. Proc. Comput. Sci. 89, 203–208 (2016)

    Article  Google Scholar 

  31. Usama, M., Liu, M., Chen, M.: Job schedulers for big data processing in hadoop environment: testing real-life schedulers using benchmark programs. Digit. Commun. Netw. 3(4), 260–273 (2017)

    Article  Google Scholar 

  32. Thirumala Rao, B., Sridevi, N.V., Krishna Reddy, V., Reddy, L.S.S.: Performance issues of heterogeneous hadoop clusters in cloud computing (2012). arXiv preprint arXiv:1207.0894

  33. Tamrakar, K., Yazidi, A., Haugerud, H.: Cost efficient batch processing in amazon cloud with deadline awareness. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 963–971. IEEE (2017)

    Google Scholar 

  34. Jlassi, A., Martineau, P.: Experimental study on performance and energy consumption of hadoop in cloud environments. In: Helfert, M., Ferguson, D., Méndez Muñoz, V., Cardoso, J. (eds.) CLOSER 2016. CCIS, vol. 740, pp. 255–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-2_13

    Chapter  Google Scholar 

  35. Wikipedia dataset 3.375 gb. https://dumps.wikimedia.org/enwiki/20171103/enwiki-20171103-pages-meta-history9.xml-p1947829p1952641.7z. Accessed 11 Feb 2018

  36. Stanford dataset 23 gb. https://snap.stanford.edu/data/bigdata/wikipedia08/enwiki-20080103.talk.bz2. Accessed 11 Feb 2018

  37. Purdue dataset 50 gb. ftp://ftp.ecn.purdue.edu/puma/wikipedia_50GB.tar.bz2. Accessed 11 Feb 2018

  38. Purdue dataset 140 gb. ftp://ftp.ecn.purdue.edu/puma/wikipedia_140GB.tar.bz2. Accessed 11 Feb 2018

  39. Purdue dataset 150 gb. ftp://ftp.ecn.purdue.edu/puma/wikipedia_150GB.tar.bz2. Accessed 11 Feb 2018

  40. Purdue dataset 300 gb. ftp://ftp.ecn.purdue.edu/puma/wikipedia_300GB.tar.bz2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Vidhyasagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidhyasagar, B.S., Perinbam, J.R.P., Krishnamurthy, M., Arunnehru, J. (2020). A Cost-Effective Data Node Management Scheme for Hadoop Clusters in Cloud Environment. In: Thampi, S., Trajkovic, L., Li, KC., Das, S., Wozniak, M., Berretti, S. (eds) Machine Learning and Metaheuristics Algorithms, and Applications. SoMMA 2019. Communications in Computer and Information Science, vol 1203. Springer, Singapore. https://doi.org/10.1007/978-981-15-4301-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4301-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4300-5

  • Online ISBN: 978-981-15-4301-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics