Skip to main content

Image Denoising Using Generative Adversarial Network

  • Chapter
  • First Online:
Intelligent Computing: Image Processing Based Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1157))

Abstract

Image denoising is one of the most important and fundamental research areas in the digital image-processing field. A noisy image can mislead image processing-based research. Therefore, image denoising is a critical area of research. In the recent advancement of computer vision, deep learning becomes most powerful tool. Deep learning is solving most of the problems, usually, which were earlier solved by various conventional techniques. The progress of deep learning encourages researchers to apply deep learning-based methods into image denoising also. In recent years, generative adversarial network (GAN) becomes a new avenue in computer vision research. The GANs are adversarial networks with generative capability, and the network has a very vast area of applications. In this chapter, we concentrate on a specific area of application of GAN—image denoising. At first, the traditional denoising techniques are highlighted. Then, we state the underlying architecture of GAN and its modifications. Then, we discuss the way GANs are applied in the area of image denoising. We survey all recent works of GANs in image denoising and categories those work according to the type of input images. In the end, we propose some research directions in this area. The compilation and discussions presented in this chapter regarding image denoising using GAN are new inclusion, and similar survey work is not available for the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, N., & Nachamai, M. (2017). Noise removal and filtering techniques used in medical images. Oriental Journal of Computer Science and Technology, 10(1), 103–113. ISSN: 0974–6471.

    Google Scholar 

  2. Patel, N., Shah, A., Mistry, M., & Dangarwala, K. (2014). A study of digital image filtering techniques in spatial image processing. In International Conference on Convergence of Technology, IEEE.

    Google Scholar 

  3. Shao, L., Yan, R., Li, X., & Liu, Y. (2014). From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Transactions on Cybernetics, 44(7), July 2014. https://doi.org/10.1109/tcyb.2013.2278548.

  4. Shapiro, L., & Stockman, G. (2001). Computer vision. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  5. Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series. New York, NY, USA: Wiley.

    Book  Google Scholar 

  6. Widrow, B., & Haykin, S. (2003). Least-mean-square adaptive filters. New York, NY, USA: Wiley-IEEE.

    Google Scholar 

  7. Yang, G. Z., Burger, P., Firmin, D. N., & Underwood, S. R. (1995). Structure adaptive anisotropic filtering. In Proceedings of IEEE International Conference on Image Process (pp. 717–721). Edinburgh, U.K.

    Google Scholar 

  8. Shao, L., Zhang, H., & de Haan, G. (2008). An overview and performance evaluation of classification-based least-squares trained filters. IEEE Transactions on Image Processing, 17(10), 1772–1782.

    Article  MathSciNet  Google Scholar 

  9. Takeda, H., Farsiu, S., & Milanfar, P. (2007). Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing, 16(2), 349–366.

    Article  MathSciNet  Google Scholar 

  10. Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of 6th International Conference on Computer Vision (pp. 839–846).

    Google Scholar 

  11. Bouboulis, P., Slavakis, K., & Theodoridis, S. (2010). Adaptive kernel-based image denoising employing semi-parametric regularization. IEEE Transactions on Image Processing, 19(6), 1465–1479.

    Article  MathSciNet  Google Scholar 

  12. Zhu, X., & Milanfar, P. (2010). Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Transactions on Image Processing, 19(12), 3116–3132.

    Article  MathSciNet  Google Scholar 

  13. Buades, A., Coll, B., & Morel, J. M. (2005) A nonlocal algorithm for image denoising. In Proceedings of IEEE International Conference Computer Vision Pattern Recognition (Vol. 2, pp. 60–65).

    Google Scholar 

  14. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., & Barillot, C. (2008). An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging, 27(4), 425–441.

    Article  Google Scholar 

  15. Tschumperle, D., & Brun, L. (2009). Non-local image smoothing by applying anisotropic diffusion PDE’s in the space of patches. In Proceedings of IEEE International Conference on Image Process (pp. 2957–2960).

    Google Scholar 

  16. Sven, G., Sebastian, Z., & Joachim, W. (2011). Rotationally invariant similarity measures for nonlocal image denoising. Journal of Visual Communication and Image Representation, 22(2), 117–130.

    Article  Google Scholar 

  17. Brailean, J. C., Kleihorst, R. P., Efstratiadis, S., Katsaggelos, A. K., & Lagendijk, R. L. (1995). Noise reduction filters for dynamic image sequences: A review. Proceedings of the IEEE, 83(9), 1272–1292.

    Article  Google Scholar 

  18. Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  19. Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.

    Article  MathSciNet  Google Scholar 

  20. Luisier, F., Blu, T., & Unser, M. (2007). A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Transactions on Image Processing, 16(3), 593–606.

    Article  MathSciNet  Google Scholar 

  21. Zhang, L., Dong, W., Zhang, D., & Shi, G. (2010). Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43(4), 1531–1549.

    Article  Google Scholar 

  22. Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  23. Dong, W., Li, X., Zhang, L., & Shi, G. (2011). Sparsity-based image denoising via dictionary learning and structural clustering. In Proceedings of IEEE International Conference on Computer Vision Pattern Recognition (pp. 457–464). Colorado, USA.

    Google Scholar 

  24. Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. In Proceedings of IEEE International Conference on Computer Vision (pp. 2272–2279).

    Google Scholar 

  25. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Generative adversarial nets. In Proceedings of Advance in Neural Information Processing System (pp. 2672–2680). Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

  26. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Deep multimodal representation learning: A survey. IEEE Access Digital Object Identifier, 7. http://doi.org/10.1109/ACCESS.2019.2905015.

  27. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  28. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019) Recent progress on generative adversarial networks (GANs): A survey. IEEE Access, 7, 36322–36333. https://doi.org/10.1109/access.2019.2905015.

  29. Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks. In Proceedings of International Conference on Learn Representation (p. 116). Available: https://arxiv.org/abs/1511.06434.

  30. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. Available: https://arxiv.org/abs/1411.1784.

  31. Makhzani, A., Shlens, J., Jaitly, N., & Goodfellow, I. (2016). Adversarial autoencoders. In Proceedings of International Conference on Learning Representation (pp. 1–16). Available: http://arxiv.org/abs/1511.05644.

  32. Donahue, J., Krähenbühl, P., & Darrell, T. (2017). Adversarial feature learning. In Proceedings of International Conference Learning Representation (pp. 1–18). Available: https://arxiv.org/abs/1605.09782.

  33. Dumoulinet, V., et al. (2017). Adversarially learned inference. In Proceedings of International Conference on Learning Representation (pp. 1–18). Available: https://arxiv.org/abs/1606.00704.

  34. Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). It takes (only) two: Adversarial generator-encoder networks. In Proceedings of AAAI Conference on Artificial Intelligence. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16568.

  35. Metz, L., Poole, B., Pfau, D., & Sohl-Dickstein, J. (2017). Unrolled generative adversarial networks. In Proceedings of International Conference on Learning Representation (pp. 1–25). Available: https://arxiv.org/abs/1611.02163.

  36. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In Proceedings of International Conference on Machine Learning (Vol. 70, pp. 214–223). Available: http://proceedings.mlr.press/v70/arjovsky17a.html.

  37. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of Wasserstein GANs. In Proceedings of 30th Advances in Neural Information Processing System (pp. 5767–5777). Available: http://papers.nips.cc/paper/7159-improved-training-of-wassersteingans.pdf.

  38. Petzka, H., Fischer, A., & Lukovnicov, D. (2018). On the regularization of Wasserstein GANs. In Proceedings of International Conference on Learning Representation (p. 124). Available: https://arxiv.org/abs/1709.08894.

  39. Zhao, J., Mathieu, M., & LeCun, Y. (2017). Energy-based generative adversarial network. In Proceedings of International Conference on Learning Representation (pp. 1–17). Available: https://arxiv.org/abs/1609.03126.

  40. Shin, Y. G., Sagong, M. C., Yeo, Y. J., & Ko, S. J. (2019). Adversarial context aggregation network for low-light image enhancement. Digital Image Computing: Techniques and Applications (DICTA), IEEE. http://doi.org/10.1109/DICTA.2018.8615848. January 17 2019.

  41. Swami, K., & Das, S. K. (2018). Candy: Conditional adversarial networks based fully end-to-end system for single image haze removal. Computer Vision and Pattern Recognition 2018. arXiv:1801.02892.

  42. Zhang, H., & Patel, V. M. (2018). Densely connected pyramid dehazing network. Computer Vision and Pattern Recognition (cs.CV) 2018. arXiv:1803.08396.

  43. Sim, H., Ki, S., Choi, J. S., Kim, S. Y., Seo, S., Kim, S., & Kim, M. (2018). High-resolution image dehazing with respect to training losses and receptive field sizes. IEEE Computer Vision and Pattern Recognition Workshops (CVPRW), 1025–1032, June 18, 2018.

    Google Scholar 

  44. Nguyen, V. G., & Nguyen, D. L. (2019). Joint image deblurring and binarization for license plate images using deep generative adversarial networks. In 5th NAFOSTED Conference on Information and Computer Science (NICS), IEEE. https://doi.org/10.1109/nics.2018.8606802, January 10, 2019.

  45. Zhang, H., Sindagi, V., & Patel, V. M. (2017). Image de-raining using a conditional generative adversarial network. Available: https://arxiv.org/abs/1701.05957.

  46. Li, Z., Zhang, J., Fang, Z., & Huang, B. (2019). Single image snow removal via composition generative adversarial networks. IEEE Access, 99, 1. https://doi.org/10.1109/access.2019.2900323.

  47. Li, T., & Lun, D. P. (2019). Single-image reflection removal via a two-stage background recovery process. IEEE Signal Processing Letters, 26(8).

    Google Scholar 

  48. Yang, G., Yu, S., Dong, H., Slabaugh, G., Dragotti, P. L., Ye, X., et al. (2018). DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing mri reconstruction. IEEE Transactions on Medical Imaging, 37(6). https://doi.org/10.1109/tmi.2017.2785879, December 21, 2017.

  49. Yu, A., Liu, S., Wei, X., Fu, T., & Liu, D. (2019). Generative adversarial networks with dense connection for optical coherence tomography images denoising. In 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). https://doi.org/10.1109/cisp-bmei.2018.8633086, February 04, 2019.

  50. Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., et al. (2018). Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Transactions on Medical Imaging, 37(6). https://doi.org/10.1109/tmi.2018.2827462, April 17, 2018.

  51. Lyu, Y., Jiang, W., Lin, Y., Voros, L., Zhang, M., Mueller, B., et al. (2019). Motion-blind blur removal for CT images with wasserstein generative adversarial networks. In 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE. https://doi.org/10.1109/cisp-bmei.2018.8633203, February 04, 2019.

  52. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A. S. (2018). Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Processing Letters, 25(9).

    Google Scholar 

  53. Park, H. S., Baek, J., You, S. K., Choi, J. K., & Seo, J. K. (2019). Unpaired image denoising using a generative adversarial network in X-Ray CT. IEEE Access, 7. https://doi.org/10.1109/access.2019.2934178, August 09, 2019.

  54. Du, W., Chen, H., Liao, P., Yang, H., Wang, G., & Zhang, Y. (2019). Visual attention network for low dose ct. https://doi.org/10.1109/lsp.2019.2922851, arXiv:1810.13059.

  55. Huang, D., Hou, C., Yang, Y., Lang, Y., & Wang, Q. (2018). Micro-doppler spectrogram denoising based on generative adversarial network. In 48th European Microwave Conference (EuMC), IEEE. https://doi.org/10.23919/eumc.2018.8541507, November 22, 2018.

  56. Wang, P., Zhang, H., & Patel, V. M. (2018). Generative adversarial network-based restoration of speckled SAR images. In IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). https://doi.org/10.1109/camsap.2017.8313133, March 12, 2018.

  57. Chen, Y., Wu, F., & Zhao, J. (2018). Motion deblurring via using generative adversarial networks for space-based imaging. In IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA). https://doi.org/10.1109/sera.2018.8477191.

  58. Liu, J., Sun, W., & Li, M. (2018). Recurrent conditional generative adversarial network for image deblurring. IEEE Access, 7. https://doi.org/10.1109/access.2018.2888885, December 21, 2018.

  59. Wu, S., Fan, T., Dong, C., & Qiao, Y. (2019). RDS-denoiser: a detail-preserving convolutional neural network for image denoising. IEEE International Conference on Cyborg and Bionic Systems (CBS). https://doi.org/10.1109/cbs.2018.8612215, January 17, 2019.

  60. Nuthna, V., Chachadi, K., & Joshi, L. S. (2019). Modeling and performance evaluation of generative adversarial network for image denoising. In International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), IEEE. https://doi.org/10.1109/ctems.2018.8769231, July 25, 2019.

  61. Chen, L., Dan, W., Cao, L., Wang, C., & Li, J. (2018). Joint denoising and super-resolution via generative adversarial training. In 24th International Conference on Pattern Recognition (ICPR). https://doi.org/10.1109/icpr.2018.8546286, August 2018.

  62. Alsaiari, A., Rustagi, R., Thomas, M. M., & Forbes, A. G. (2019). Image denoising using a generative adversarial network. In IEEE 2nd International Conference on Information and Computer Technologies (ICICT), IEEE. https://doi.org/10.1109/infoct.2019.8710893, May 13, 2019.

  63. Chen, J., Chen, J., Chao, H., & Yang, M. (2018). Image blind denoising with generative adversarial network based noise modeling. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2018.00333, December 17, 2018.

  64. Creswell, A., & Bharath, A. A. (2019). Denoising adversarial autoencoders. IEEE Transactions on Neural Networks and Learning Systems, 30(4).

    Google Scholar 

  65. ZhiPing, Q., YuanQi, Z., Yi, S., & XiangBo, L. (2018). A new generative adversarial network for texture preserving image denoising. In Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE. https://doi.org/10.1109/ipta.2018.8608126, January 14, 2019.

  66. Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In Proceedings of the International Conference on Learning Representations.

    Google Scholar 

  67. AAPM. (2017). Low dose CT grand challenge. Available: http://www.aapm.org/GrandChallenge/LowDoseCT/#.

  68. Hennig, J., Nauerth, A., & Friedburg, H. (1986). RARE imaging: A fastimaging method for clinical MR. Magnetic Resonance in Medicine, 3(6), 823–833.

    Article  Google Scholar 

  69. Carnegie Mellon university motion capture database. http://mocap.cs.cmu.edu/. Accessed February 13, 2019.

  70. Russakovsky, O., Deng, J., Su, H., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(4), 211–252.

    Article  MathSciNet  Google Scholar 

  71. Roth, S., & Black, M. J. (2009). Fields of experts. International Journal of Computer Vision, 82(2), 205.

    Article  Google Scholar 

  72. Paltz, T., & Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 (pp. 2750–2759). Honolulu, HI, USA, July 21–26, 2017.

    Google Scholar 

  73. Nah, S., Kim, T. H., & Lee, K. M. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of IEEE Conference on Computer Visual and Pattern Recognition (pp. 257–265).

    Google Scholar 

  74. Timofte, R., Agustsson, E., Van Gool, E., et al. (2017). Nature 2017 challenge on single image super-resolution: Methods and results. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1110–1121).

    Google Scholar 

  75. Zhang, L., Wu, X., Buades, A., et al. (2011). Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. Journal of Electronic Imaging, 20(2), 023016.

    Article  Google Scholar 

  76. Zeyde, R., Elad, M., Protter, M. (2010). On single image scale-up using sparse representations. In International conference on curves and surfaces (pp. 711–730). Springer, Berlin, Heidelberg.

    Google Scholar 

  77. Lebrun, M., Colom, M., & Morel, J. M. (2015). The noise clinic: A blind image denoising algorithm. Image Processing On Line, 5, 1–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnadeep Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, R., Bhattacharjee, D., Nasipuri, M. (2020). Image Denoising Using Generative Adversarial Network. In: Mandal, J., Banerjee, S. (eds) Intelligent Computing: Image Processing Based Applications. Advances in Intelligent Systems and Computing, vol 1157. Springer, Singapore. https://doi.org/10.1007/978-981-15-4288-6_5

Download citation

Publish with us

Policies and ethics