Computational Incompressible Aerodynamics



Analysis of aerodynamic properties of aerospace vehicles has now matured to a stage, where high accuracy computing can, to a large extent, replace the design data book’s sectional properties. In this chapter, we focus on main issues which make computational aerodynamics a practical tool.


  1. 1.
    J.D. Anderson, Fundamentals of Aerodynamics, 5th edn. (Tata McGraw-Hill, India, 2010)Google Scholar
  2. 2.
    P.M. Bagade, Y.G. Bhumkar, T.K. Sengupta, An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput. Fluids 103, 275–289 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P.M. Bagade, S.B. Krishnan, T.K. Sengupta, DNS of low Reynolds number aerodynamics in the presence of free stream turbulence. Front. Aero. Engg. 4(1), 20–34 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Bhaumik, T.K. Sengupta, Precursor of transition to turbulence: spatiotemporal wave front. Phys. Rev. E 89(4), 043018 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.G. Bhumkar, T.K. Sengupta, Adaptive multi-dimensional filters. Comput. Fluids 49(1), 128–140 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    D.L. Brown, M.L. Minion, Performance of under-resolved two-dimensional incompressible flow simulations. J. Comput. Phys. 122, 165–83 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    P.C. Chu, C. Fan, A three-point combined compact difference scheme. J. Comput. Phys. 140(2), 370–399 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A. Dipankar, T.K. Sengupta, Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J. Comput. Phys. 215, 245–273 (2006)zbMATHCrossRefGoogle Scholar
  9. 9.
    D. Drikakis, P.K. Smolarkiewicz, On spurious vortical structures. J. Comput. Phys. 172, 309–25 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R. Duraiswami, A. Prosperetti, Orthogonal mapping in two dimensions. J. Comput. Phys. 98, 254–268 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Eca, 2D orthogonal grid generation with boundary point distribution control. J. Comput. Phys. 125, 440–453 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    P.G. Esposito, R. Verzicco, P. Orlandi, Boundary condition influence on the flow around a circular cylinder, in The Proceedings of IUTAM Symposium on Bluff-Body Wakes, Dynamics and Instabilities (Springer, Berlin, Germany, 1993), pp. 47–50Google Scholar
  13. 13.
    H. Fasel, U. Konzelmann, Non-parallel stability of a flat plate boundary layer using the complete Navier-Stokes equation. J. Fluid Mech. 221, 331–347 (1990)zbMATHCrossRefGoogle Scholar
  14. 14.
    M. Fujino, Y. Yoshizaki, Y. Kawamura, Natural-laminar-flow airfoil development for a lightweight business jet. J. Aircraft 40(4), 609–615 (2003)CrossRefGoogle Scholar
  15. 15.
    W. Heisenberg, \(\ddot{\rm U}\)ber stabilit\({\ddot{\rm a}}\)t und turbulenz von fl\({\ddot{\rm u}}\)ssigkeitsstr\({\ddot{\rm o}}\)men. Ann. Phys. Lpz., 379, 577–627 (1924) (Translated as ‘ On stability and turbulence of fluid flows’. NACA Tech. Memo. Wash. No 1291 1951)Google Scholar
  16. 16.
    A.C. Hindmarsh, P.M. Gresho, D.F. Griffiths, The stability of explicit euler time-integration for certain finite difference approximations of the multi-dimensional advection-diffusion equation. Int. J. Numer. Methods Fluids 4(9), 853–97 (1984)zbMATHCrossRefGoogle Scholar
  17. 17.
    S. Kawai, K. Fujii, Compact scheme with filtering for large-eddy simulation of transitional boundary layer. AIAA J. 46, 690–700 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Laizet, E. Lamballais, High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228(16), 5989–6015 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    T.T. Lim, T.K. Sengupta, M. Chattopadhyay, A visual study of vortex-induced subcritical instability on a flat plate laminar boundary layer. Expts. Fluids 37, 47–55 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Mamou, Y. M\(\acute{e}\)barki, M. Khalid, M. Genest, D. Coutu, A.V. Popov, Aerodynamic performance optimization of a wind tunnel morphing wing model subject to various cruise flow conditions, in 27th International Congress of the Aeronautical Sciences, vol. 230, pp. 27–60 (2011)Google Scholar
  21. 21.
    M.L. Minion, D.L. Brown, Performance of under-resolved two-dimensional incompressible flow simulations-II. J. Comput. Phys. 138, 734–65 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    M.V. Morkovin, On the many faces of transition, in Viscous Drag Reduction 1–31, (Ed.), by C.S. Wells (Plenum Press, New York, 1969)Google Scholar
  23. 23.
    M.T. Nair, T.K. Sengupta, Orthogonal grid generation for Navier-Stokes computations. Int. J. Num. Meth. Fluids 28, 215–224 (1998)zbMATHCrossRefGoogle Scholar
  24. 24.
    L. Prandtl, Essentials of Fluid Dynamics (Hafner Publishing, New York, USA, 1952)zbMATHGoogle Scholar
  25. 25.
    S. Pirozzoli, Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43(1), 163–94 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    T. Poinsot, D. Veynante, Theo. and Numer. Combus. Edwards, PA, 2nd edn (2005)Google Scholar
  27. 27.
    G. Ryskin, L.G. Leal, Orthogonal mapping. J. Comput. Phys. 50, 71–100 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    R. Sandberg, Direct numerical simulations for flow and noise studies. Procedia Eng. 61, 356–62 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Schlichting, Zur entstehung der turbulenz bei der plattenstr\({\ddot{\rm o}}\)mung. Nach. Gesell. d. Wiss. z. G\( {\ddot{\rm o}}\)tt., MPK,42, 181–208 (1933)Google Scholar
  30. 30.
    G.B. Schubauer, H.K. Skramstad, Laminar boundary layer oscillations and the stability of laminar flow. J. Aero. Sci. 14(2), 69–78 (1947)CrossRefGoogle Scholar
  31. 31.
    T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (University Press, Hyderabad, India, 2004)Google Scholar
  32. 32.
    T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomenon (Cambridge University Press, USA, 2013)Google Scholar
  33. 33.
    T.K. Sengupta, Theoretical and Computational Aerodynamics (Wiley, UK, 2015)zbMATHGoogle Scholar
  34. 34.
    T.K. Sengupta, S. Bhaumik, Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 154501, 1–5 (2011)Google Scholar
  35. 35.
    T.K. Sengupta, S. Bhaumik, V. Singh, S. Shukl, Nonlinear and nonparallel receptivity of zero-pressure gradient boundary layer. Int. J. Emerg. Mult. Fluid Sci. 1(1), 19–35 (2009)Google Scholar
  36. 36.
    T.K. Sengupta, A. Bhole, Error dynamics of diffusion equation: effects of numerical diffusion and dispersive diffusion. J. Comput. Phys. 226(1), 240–251 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    T.K. Sengupta, A. Bhole, N.A. Sreejith, Direct numerical simulation of 2D transonic flows around airfoils. Comput. Fluids 88, 19–37 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    T.K. Sengupta, Y.G. Bhumkar, S. Sengupta, Dynamics and instability of a shielded vortex in close proximity of a wall. Comput. Fluids 70, 166–175 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    T.K. Sengupta, Y.G. Bhumkar, Direct numerical simulation of transition over a NLF aerofoil: methods and validation frontiers in aerospace. Engineering 2, 1 (2013)Google Scholar
  40. 40.
    T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRefGoogle Scholar
  41. 41.
    T.K. Sengupta, Y. Bhumkar, M. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    T.K. Sengupta, S. De, S. Sarkar, Vortex-induced instability of an incompressible wall-bounded shear layer. J. Fluid Mech. 493, 277–286 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)zbMATHCrossRefGoogle Scholar
  45. 45.
    T.K. Sengupta, R. Jain, A. Dipankar, A new flux-vector splitting compact finite volume scheme. J. Comput. Phys. 207, 261–81 (2005)zbMATHCrossRefGoogle Scholar
  46. 46.
    T.K. Sengupta, V. Lakshmanan, V.V.S.N. Vijay, A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228(8), 3048–3071 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    J.L. Steger, D.S. Chaussee, Generation of body-fitted coordinates using hyperbolic partial differential equations. SIAM J. Sci. Stat. Comput. 1, 431–437 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    T.K. Sengupta, T. Poinsot, Instabilities of Flows: With and Without Heat Transfer and Chemical Reaction (Springer Wien, New York, 2010)Google Scholar
  49. 49.
    T.K. Sengupta, M.K. Rajpoot, Y.G. Bhumkar, Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47(1), 144–154 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    T.K. Sengupta, M.K. Rajpoot, S. Saurabh, V.V.S.N. Vijay, Analysis of anisotropy of numerical wave solutions by high accuracy finite difference methods. J. Comput. Phys. 230, 27–60 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    T.K. Sengupta, A. Sengupta, S. Kumar, Global spectral analysis of multi-level time integration schemes: numerical properties for error analysis. Appl. Maths. Comput. 304, 41–57 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    T.K. Sengupta, V.V.S.N. Vijay, S. Bhaumilk, Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228(17), 6150–6168 (2009)zbMATHCrossRefGoogle Scholar
  53. 53.
    V.K. Suman, T.K. Sengupta, C. Jyothi Durga Prasad, K. Mohan, D. Surya and Sanwalia, Spectral analysis of finite difference schemes for convection diffusion equation. Comput. Fluids 150, 95–114 (2017)Google Scholar
  54. 54.
    J.F. Thompson, Z.U.A. Warsi, C.W.J. Mastin, Boundary-fitted coordinate systems for numerical solution of partial differential equations–A review. J. Comput. Phys. 47, 1–108 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    W. Tollmien, \(\ddot{\rm U}\)ber die enstehung der turbulenz. I, English translation. NACA TM 609 (1931)Google Scholar
  56. 56.
    A. Uzun, G.A. Blaisdell, A.S. Lyrintzis, Application of compact schemes to large eddy simulation of turbulent jets. J. Sci. Comput. 21(3), 283–319 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    H.A. Van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992)zbMATHCrossRefGoogle Scholar
  58. 58.
    R. Vichnevetsky, J. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (Society for Industrial and Applied Mathematics, Philadelphia, 1982)zbMATHCrossRefGoogle Scholar
  59. 59.
    G.A. Williamson, B.D. McGranahan, B.A. Broughton, R.W. Deters, J.B. Brandt, M.S. Selig, Summary of Low Speed Airfoil Data. Dept. of Aerospace Engineering, University of Illionois at Urbana-Champaign, vol. 5 (2007)Google Scholar
  60. 60.
    H.C. Yee, R.K. Sweby, Dynamical approach study of spurious steady-state numerical solutions for nonlinear differential equations, part II: global asymptotic behaviour of time discretizations. Int. J. Comput. Fluid Dynam. 4, 219–83 (1995)CrossRefGoogle Scholar
  61. 61.
    Y. Zhang, Y. Jia, S.S.Y. Wang, 2D nearly orthogonal mesh generation with controls on distortion function. J. Comput. Phys. 218, 549–71 (2006)zbMATHCrossRefGoogle Scholar
  62. 62.
    Q. Zhou, Z. Yao, F. He, M. Shen, A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227(2), 1306–39 (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.School of Mechanical SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations