Advertisement

Governing Equations for Aerodynamics and Acoustics

Chapter
  • 512 Downloads

Abstract

Fluid dynamical governing equations are given by the conservation principles of mass, momentum, and energy as noted in Chap.  1. Although the Navier–Stokes equation is an application of Newton’s second law for fluid flows, one also assumes the relation between the stress and the rate of strain tensor. There are many versions of Navier–Stokes equation (NSE), depending upon the constitutive relation of the fluid medium. In the following, we will focus mainly on what is known as Newtonian fluid, for which the stress and rate of strain have linear relation.

References

  1. 1.
    Y. Adams, Highly accurate compact implicit method and boundary conditions. Comput. Phys. 24, 10–22 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R.L. Ash, A.J. Zuckerwar, Z. Zheng, Second Coefficient of Viscosity in Air. NASA-CR-187783 (1991)Google Scholar
  3. 3.
    B. Auld, Acoustic Fields and Waves in Solids (Wiley-Interscience, New York, 1973)Google Scholar
  4. 4.
    M.F. Barone, C.J. Roy, Evaluation of detached eddy simulation for turbulent wake applications. AIAA J. 44(12), 3062–3071 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Bhaumik, Direct Numerical Simulation of Inhomogeneous Transitional and Turbulent Flows. Ph.D. Thesis, I. I. T. Kanpur (2013)Google Scholar
  6. 6.
    S. Bhaumik, T.K. Sengupta, Precursor of transition to turbulence: spatio-temporal wave front. Phys. Rev. E 89(4), 043018 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Bhaumik, T.K. Sengupta, A new velocity-vorticity formulation for direct numerical simulation of 3D transitional and turbulent flows. J. Comput. Phys. 284, 230–260 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Y.G. Bhumkar, High Performance Computing of Bypass Transition. Ph.D. Thesis, I. I. T. Kanpur (2011)Google Scholar
  9. 9.
    Y.G. Bhumkar, T.K. Sengupta, Adaptive multi-dimensional filters. Comput. Fluids 49(1), 128–140 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960)Google Scholar
  11. 11.
    G. Buresti, A note on Stokes hypothesis. Acta Mech. 226, 3555–9 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J.G. Charney, R. Fj\(\varnothing \)rtoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950)Google Scholar
  13. 13.
    P.H. Chiu, T.W.H. Sheu, On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009)Google Scholar
  14. 14.
    P.C. Chu, C. Fan, A three-point combined compact difference scheme. J. Comput. Phys. 140, 370–399 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    M.S. Cramer, Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24(066102), 1–23 (2012)MathSciNetGoogle Scholar
  16. 16.
    J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 43(50), 50–67 (1947)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    J.D. Crouch, A. Garbaruk, D. Magidov, A. Travin, Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, UK, 2004)Google Scholar
  19. 19.
    G. Emanuel, Bulk viscosity of a dilute polyatomic gas. Phys. Fluids A 2, 2252–2254 (1990)CrossRefGoogle Scholar
  20. 20.
    M. Gad-el-Hak, Questions in fluid mechanics. Stokes’ hypothesis for a Newtonian, isotropic fluid. J. Fluids Eng. 117, 3–5 (Technical Forum) (1995)Google Scholar
  21. 21.
    D.V. Gaitonde, J.S. Shang, J.L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Meth. Eng. 45, 1849 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    D.V. Gaitonde, M.R. Visbal, Further development of a Navier-Stokes solution procedure based on higher order formulas, in 37th Aerospace Sciences Meeting and Exhibition, AIAA 99–0557, Reno, NV (1999)Google Scholar
  23. 23.
    D.V. Gaitonde, M.R. Visbal, Pad\(\acute{e}\)-type higher-order boundary filters for the Navier-Stokes equations. AIAA J. 38(11), 2103 (2000)CrossRefGoogle Scholar
  24. 24.
    T.B. Gatski, Review of incompressible fluid flow computations using the vorticity-velocity formulation. Appl. Numer. Math. 7, 227–239 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. J. Comput. Phys. 48, 1–22 (1982)zbMATHCrossRefGoogle Scholar
  26. 26.
    T.B. Gatski, C.E. Grosch, M.E. Rose, A numerical solution of the Navier-Stokes equations for three-dimensional, unsteady, incompressible flows by compact schemes. J. Comput. Phys. 82, 298–329 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    S. Ghosal, P. Moin, The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    R.E. Graves, B.M. Argrow, Bulk viscosity: past to present. J. Thermophys. Heat Trans. 13(3), 337–342 (1999)CrossRefGoogle Scholar
  29. 29.
    W.R. Hamilton, The Collected Mathematical Papers, vol. 4 (Cambridge University Press, 1839)Google Scholar
  30. 30.
    G.J. Hirasaki, J.D. Hellums, A general formulation of the boundary conditions on the vector potential in three-dimensional hydrodynamics. Quart. Appl. Maths. 26(3), 331–342 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    G.J. Hirasaki, J.D. Hellums, Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Quart. Appl. Maths. 28(2), 293–296 (1970)zbMATHCrossRefGoogle Scholar
  32. 32.
    J.T. Holdeman, A velocity-stream function method for three-dimensional incompressible fluid flow. Comput. Methods Appl. Mech. Eng. 209, 66–73 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    F. Jenkins, H. White, Fundamentals of Physical Optics (McGraw-Hill, New York, 1973)Google Scholar
  34. 34.
    S.M. Karim, L. Rosenhead, Rev. Modern Phys. 24, 108–16 (1952)CrossRefGoogle Scholar
  35. 35.
    C.A. Kennedy, M.H. Carpenter, Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Z. Kopal, Numerical Analysis (Springer, New York, USA, 1966)Google Scholar
  37. 37.
    H. Kreiss, J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRefGoogle Scholar
  38. 38.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959)Google Scholar
  39. 39.
    S.K. Lele, Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    L.N. Liebermann, The second viscosity of liquids. Phys. Rev. 75(9), 1415 (1949)CrossRefGoogle Scholar
  41. 41.
    M.J. Lighthill, Fourier Analysis and Generalized Functions (Cambridge University Press, Cambridge, UK, 1978)Google Scholar
  42. 42.
    J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn, R. Friedrich, An explicit filtering ethod for large eddy simulation of compressible flows. J. Comput. Phys. 15(8), 2279 (2003)zbMATHGoogle Scholar
  43. 43.
    F.M. Najjar, D.K. Tafti, Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model. J. Comput. Phys. 8(4), 1076 (1996)zbMATHGoogle Scholar
  44. 44.
    J. Ortega-Casanova, R. Fernandez-Feria, A numerical method for the study of nonlinear stability of axisymmetric flows based on the vector potential. J. Comput. Phys. 227(6), 3307–3321 (2008)Google Scholar
  45. 45.
    G.A. Oswald, K.N. Ghia, U. Ghia, Direct solution methodologies for the unsteady dynamics of an incompressible fluid, in International Conference of Computing in Engineering, Science, vol. 2, Atlanta, ed. by S.N. Atluri, G. Yagawa (Springer, Berlin, 1988)Google Scholar
  46. 46.
    K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.-C. Hege, B.R. Noack, I. Wygnanski, Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)zbMATHCrossRefGoogle Scholar
  47. 47.
    T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edn. (Edwards, PA, 2005)Google Scholar
  48. 48.
    J. Pradhan, B. Mahato, S.D. Dhandole, Y.G. Bhumkar, Construction, analysis and application of coupled compact difference scheme in computational acoustics and fluid flow problems. Commun. Comput. Phys. 18(4), 957–984 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    K.R. Rajagopal, A new development and interpretation of the Navier-Stokes fluid which reveals why the “Stokes assumption” is inapt. Int. J. Non-Linear Mech. 50, 141–151 (2013)CrossRefGoogle Scholar
  50. 50.
    M.K. Rajpoot, T.K. Sengupta, P.K. Dutt, Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229(10), 3623–3651 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    L. Rayleigh, Scientific Papers 1 (Cambridge University Press, Cambridge, 1889)Google Scholar
  52. 52.
    L. Rayleigh, Scientific Papers 2 (Cambridge University Press, Cambridge, 1890)Google Scholar
  53. 53.
    W.C. Reynolds, A.K.M.F. Hussain, The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54(2), 263–288 (1972)Google Scholar
  54. 54.
    D.P. Rizzetta, M.R. Visbal, G.A. Blaisddell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation. Int. J. Numer. Meth. Fluids 42, 655 (2003)CrossRefGoogle Scholar
  55. 55.
    D.P. Rizzetta, M.R. Visbal, P.E. Morgan, A high-order compact finite-difference scheme for large-eddy simulation of active flow control, in 46th Aerospace Sciences Meeting and Exhibition, AIAA 2008-526, Reno, NV (2008)Google Scholar
  56. 56.
    L. Rosenhead, Proc. R. Soc. London A 226, 1–6 (1954)MathSciNetGoogle Scholar
  57. 57.
    P. Sagaut, Large Eddy Simulation for Incompressible Flows (Springer, Berlin, 2002)Google Scholar
  58. 58.
    A. Sengupta, V.K. Suman, T.K. Sengupta, S. Bhaumik, An enstrophy-based linear and nonlinear receptivity theory. Phys. Fluids 30, 054016 (2018)Google Scholar
  59. 59.
    T.K. Sengupta, Fundamentals of Computational Fluid Dynamics (University Press, Hyderabad, India, 2004)Google Scholar
  60. 60.
    T.K. Sengupta, Instabilities of Flows and Transition to Turbulence (CRC Press, Taylor & Francis Group, Florida, USA, 2012)Google Scholar
  61. 61.
    T.K. Sengupta, High Accuracy Computing Methods: Fluid Flows and Wave Phenomenon (Cambridge University Press, USA, 2013)Google Scholar
  62. 62.
    T.K. Sengupta, S. Bhaumik, Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 154501, 1–5 (2011)Google Scholar
  63. 63.
    T.K. Sengupta, S. Bhaumik, DNS of Wall-Bounded Turbulent Flows: A First Principle Approach (Springer-Nature, Singapore, 2019)Google Scholar
  64. 64.
    T.K. Sengupta, S. Bhaumik, Y.G. Bhumkar, Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85(2), 026308 (2012)CrossRefGoogle Scholar
  65. 65.
    T.K. Sengupta, S. Bhaumik, R. Bose, Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013)CrossRefGoogle Scholar
  66. 66.
    T.K. Sengupta, Y.G. Bhumkar, New explicit two-dimensional higher order filters. Comput. Fluids 39, 1848–1863 (2010)zbMATHCrossRefGoogle Scholar
  67. 67.
    T.K. Sengupta, Y. Bhumkar, V. Lakshmanan, Design and analysis of a new filter for LES and DES. Comput. Struct. 87, 735–750 (2009)CrossRefGoogle Scholar
  68. 68.
    T.K. Sengupta, Y. Bhumkar, M.K. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetzbMATHGoogle Scholar
  69. 69.
    T.K. Sengupta, S. Dey, Proper orthogonal decomposition of direct numerical simulation data of by-pass transition. Comput. Struct. 82, 2693–2703 (2004)CrossRefGoogle Scholar
  70. 70.
    T.K. Sengupta, A. Dipankar, A comparative study of time advancement methods for solving Navier-Stokes equations. J. Sci. Comput. 21(2), 225–250 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    T.K. Sengupta, A. Dipankar, P. Sagaut, Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    T.K. Sengupta, G. Ganeriwal, S. De, Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)zbMATHCrossRefGoogle Scholar
  73. 73.
    T.K. Sengupta, V. Lakshmanan, V.V.S.N. Vijay, A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228(8), 3048–3071 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    T.K. Sengupta, M.T. Nair, A new class of waves for Blasius boundary layer, in Proceeding of 7th Asian Congress of Fluid Mechanics (Allied Publishers, Chennai, India, 1997), pp. 785–788Google Scholar
  75. 75.
    T.K. Sengupta, Y.G. Bhumkar, M. Rajpoot, V.K. Suman, S. Saurabh, Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetzbMATHGoogle Scholar
  76. 76.
    T.K. Sengupta, A.K. Rao, K. Venkatasubbaiah, Spatio-temporal growing wave fronts in spatially stable boundary layers. Phys. Rev. Lett. 96(22), 224504 (2006)CrossRefGoogle Scholar
  77. 77.
    T.K. Sengupta, A. Sengupta, S. Sengupta, A. Bhole, K.S. Shruti, Non-equilibrium thermodynamics of Rayleigh-Taylor instability. Int. J. Thermophys. 37(4), 1–25 (2016)CrossRefGoogle Scholar
  78. 78.
    T.K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole, K.S. Shruti, Roles of bulk viscosity on Rayleigh-Taylor instability: non-equilibrium thermodynamics due to spatio-temporal pressure fronts. Phys. Fluids 28, 094102 (2016)CrossRefGoogle Scholar
  79. 79.
    T.K. Sengupta, H. Singh, S. Bhaumik, R. Roy Chowdhury, Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comp. Fluids 88, 440–451 (2013)Google Scholar
  80. 80.
    T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 151–193 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy compact schemes for DNS and acoustics. J. Sci. Comput. 26(2), 151–193 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    T.K. Sengupta, V.V.S.N. Vijay, S. Bhaumilk, Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228(17), 6150–6168 (2009)zbMATHCrossRefGoogle Scholar
  83. 83.
    N. Sharma, T.K. Sengupta, Vorticity dynamics of the three-dimensional Taylor-Green vortex problem. Phys. Fluids 31, 035106 (2019)CrossRefGoogle Scholar
  84. 84.
    Y.I. Shokin, The Method of Differential Approximation (Springer, Berlin, 1983)Google Scholar
  85. 85.
    S. Stoltz, N.A. Adams, L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13(4), 997 (2001)zbMATHCrossRefGoogle Scholar
  86. 86.
    B. Swartz, B. Wendroff, The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Num. Anal. 11(5), 994–996 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    C.K.W. Tam, K. Viswanathan, K.K. Ahuja, J. Panda, The sources of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008)Google Scholar
  88. 88.
    H. Tennekes, J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, MA, 1971)Google Scholar
  89. 89.
    L. Tisza, Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61, 531 (1942)CrossRefGoogle Scholar
  90. 90.
    E. Touber, N.D. Sandham, Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theo. Comput. Fluid Dyns. 23(2), 79–107 (2009)Google Scholar
  91. 91.
    L.N. Trefethen, Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–136 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    P.G. Tucker, Differential equation-based wall distance computation for DES and RANS. J. Comput. Phys. 190, 229–248 (2003)zbMATHCrossRefGoogle Scholar
  93. 93.
    O.V. Vasilyev, T.S. Lund, P. Moin, A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM Studies of Applied Mathematics, Philadelphia, USA, 1982)Google Scholar
  95. 95.
    M.R. Visbal, D.V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231 (1999)CrossRefGoogle Scholar
  96. 96.
    M.R. Visbal, D.V. Gaitonde, On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    H.A.V. der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)Google Scholar
  98. 98.
    E. Weinan, J.-G. Liu, Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124(2), 368–382 (1996)Google Scholar
  99. 99.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974)Google Scholar
  100. 100.
    A.K. Wong, J.A. Reizes, An effective vorticity-vector potential formulation for the numerical solution of three-dimensional duct flow problems. J. Comput. Phys. 55(1), 98–114 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    A.K. Wong, J.A. Reizes, The vector potential in the numerical solution of three-dimensional fluid dynamics problems in multiply connected regions. J. Comput. Phys. 62(1), 124–142 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    D.W. Zingg, Comparison of high-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput. 22(2), 476–502 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.School of Mechanical SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations