Skip to main content

Autophagy and Obesity and Diabetes

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1207)

Abstract

The prevalence of obesity is increasing rapidly and is closely associated with a variety of metabolic diseases. Recent studies have suggested that autophagy is likely to play an important role in the development of obesity and may be related to insulin sensitivity. Autophagy may be involved in the browning of white adipose tissue and may also affect the metabolic balance of lipids. Autophagy can degrade cytoplasmic lipids by lipophagy in hepatocytes. Furthermore, Autophagy in hepatocytes helps prevent NAFLD. The study of autophagy in glucose metabolism is still in a very preliminary stage. Changes in autophagy activity play an important role in the development of insulin resistance in diabetes and many metabolic diseases. Therefore, it is still worth further exploration on the deeper mechanism of oxidative stress induction of insulin resistance to autophagy and whether there will be corresponding complications to the body.

Keywords

  • Autophagy
  • Obesity
  • Diabetes
  • Lipophagy
  • Glucose metabolism

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelini C, Nascimbeni AC, Cenacchi G et al (2016) Lipolysis and lipophagy in lipid storage myopathies. BBA—Molecular Basis of Disease 1862(7):1367–1373

    CrossRef  CAS  PubMed  Google Scholar 

  • Arakawa S, Honda S, Yamaguchi H et al (2017) Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad 93(6):378–385

    CrossRef  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoph H, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469

    CrossRef  Google Scholar 

  • Cuervo AM, Singh R, Baikati K (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Investig 119(11):3329–3339

    PubMed  Google Scholar 

  • Dehdashtian E, Mehrzadi S, Yousefi B et al (2018) Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 193:20–33

    CrossRef  CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (New York, NY) 331(6016):456–461

    CrossRef  CAS  Google Scholar 

  • Falavarjani KG, Aghamirsalim M, Modarres M et al (2015) Endophthalmitis after resident-performed intravitreal bevacizumab injection. Can J Ophthalmol 50(1):33–36

    CrossRef  PubMed  Google Scholar 

  • Frudd K, Burgoyne T, Burgoyne JR (2018) Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun 9(1):95

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB et al (2017) Obesity. Nat Rev Dis Primers 3:17034

    CrossRef  PubMed  Google Scholar 

  • Hakonarson H, Grant SF, Bradfield JP et al (2007) A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448(7153):591–594

    CrossRef  CAS  PubMed  Google Scholar 

  • He C, Bassik MC, Moresi V et al (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SS, Ding DF, Chen S et al (2017) Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy. Sci Rep 7:45692

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Itahana Y, Itahana K (2018) Emerging roles of p53 family members in glucose metabolism. Int J Mol Sci 19(3):E776 (2018)

    Google Scholar 

  • Jayaraman A, Pike CJ (2014) Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr DiabRep 14(4):476

    CrossRef  Google Scholar 

  • Kovsan J, Bluher M, Tarnovscki T et al (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96(2):E268–E277

    CrossRef  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Y, Wang L et al (2017) Autophagy impairment mediated by S-nitrosation of ATG4B leads to neurotoxicity in response to hyperglycemia. Autophagy 13(7):1145–1160

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ost A, Svensson K, Ruishalme I et al (2010) Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 16(7–8):235–246

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Papinski D, Kraft C (2016) Regulation of autophagy by signaling through the Atg1/ULK1 complex. J Mol Biol 428(9):1725–1741

    CrossRef  CAS  PubMed  Google Scholar 

  • Rohrborn D, Bruckner J, Sell H et al (2016) Reduced DPP4 activity improves insulin signaling in primary human adipocytes. Biochem Biophys Res Commun 471(3):348–354

    CrossRef  PubMed  Google Scholar 

  • Russo SB, Baicu CF, Van Laer A et al (2012) Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Investig 122(11):3919–3930

    CrossRef  CAS  PubMed  Google Scholar 

  • Santos RX, Correia SC, Alves MG et al (2014) Insulin therapy modulates mitochondrial dynamics and biogenesis, autophagy and tau protein phosphorylation in the brain of type 1 diabetic rats. Biochem Biophys Acta 1842(7):1154–1166

    CAS  PubMed  Google Scholar 

  • Sarparanta J, Garcia-Macia M, Singh R (2017) Autophagy and mitochondria in obesity and type 2 diabetes. Curr Diabetes Rev 13(4):352–369

    CrossRef  CAS  PubMed  Google Scholar 

  • Schulze RJ, Drižytė K, Casey CA et al (2017a) Hepatic lipophagy: new insights into autophagic catabolism of lipid droplets in the liver. Hepatol Commun 1(5):359–369

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schulze RJ, Sathyanarayan A, Mashek DG (2017b) Breaking fat: the regulation and mechanisms of lipophagy. Biochim biophys acta Molecular and Cell Biology of Lipids 1862(10 Pt B):1178–1187

    Google Scholar 

  • Tremblay F, Krebs M, Dombrowski L et al (2005) Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes 54(9):2674–2684

    CrossRef  CAS  PubMed  Google Scholar 

  • Ueno T, Komatsu M (2017) Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 14(3):170–184

    CrossRef  CAS  PubMed  Google Scholar 

  • Ward C, Martinez-Lopez N, Otten EG, Carroll B et al (2016) Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 1861(4):269–284

    CrossRef  CAS  PubMed  Google Scholar 

  • Wen H, Gris D, Lei Y et al (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12(5):408–415

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wu QQ, Duan MX et al (2018) TAX1BP1 overexpression attenuates cardiac dysfunction and remodeling in STZ-induced diabetic cardiomyopathy in mice by regulating autophagy. Biochim biophys acta Molecular Basis of Disease 1864(5 Pt A):1728–1743

    Google Scholar 

  • Xu Q, Mariman EC, Roumans NJ et al (2018) Adipose tissue autophagy related gene expression is associated with glucometabolic status in human obesity. Adipocyte 7(1):1–8

    CrossRef  Google Scholar 

  • Yujie D, Jun X, Xiaoyan Z et al (2014) Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy 10(10):1776–1786

    CrossRef  Google Scholar 

  • Zhan M, Usman IM, Sun L et al (2015) Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol 26(6):1304–1321

    CrossRef  CAS  Google Scholar 

  • Zhang Z, Yao Z, Chen Y et al (2018) Lipophagy and liver disease: new perspectives to better understanding and therapy. Biomed Pharmacother 97:339–348

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang L, Qiao Y et al (2013) Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS ONE 8(9):e75927

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Guo Y, Jiang Y et al (2017) Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun 494(1–2):42–50

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhou KL, Zhou YF, Wu K et al (2015) Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury. Sci Rep 5:17130

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou T, Chen D, Yang Q et al (2017) Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol 595(5):1547

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tao, T., Xu, H. (2020). Autophagy and Obesity and Diabetes. In: Le, W. (eds) Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology, vol 1207. Springer, Singapore. https://doi.org/10.1007/978-981-15-4272-5_32

Download citation