Skip to main content

Agroforestry for Rehabilitation of Degraded Landscapes: Achieving Livelihood and Environmental Security

  • Chapter
  • First Online:
Agroforestry for Degraded Landscapes

Abstract

Land degradation is occurring in almost all terrestrial biomes and agroecologies, in both low- and high-income countries. However, its impact is especially severe on the livelihoods of the poor, who are heavily dependent on natural resources. About two billion ha of land in the world is affected by various forms of natural and human-induced land degradation, water erosion being the main contributor (1.1 billion ha). Several scientific reports highlighted in this review show the extent to which soil degradation is threatening food security as well as ecosystem goods and services and depleting ecosystems in different regions of the world. Ecological restoration of degraded ecosystems is a global priority. The various restoration projects range in size from plot to regional level using site-specific abiotic and biotic interventions. Agroforestry encompasses a wide range of approaches and technologies for restoring degraded lands. Agroforestry options are being used to rehabilitate/restore degraded lands from intensive agriculture, soil erosion, deforestation, rangeland degradation, mining and overextraction at various scales, from plot, to ecosystem, to landscape level. By applying appropriate agroforestry technologies, involving various species of forest and fruit trees, forages, arable crops, high-value medicinal crops, dairy and meat livestock, fish and poultry, the production systems can be successfully more remunerative. Agroforestry systems (AFS), which are increasingly being considered as climate-smart agriculture, have been designed for optimization of desired outputs, such as timber or fuelwood (agrisilviculture), or for specific land rehabilitation objectives, such as protection of soil from erosion (alley cropping and sand dune stabilization), reclamation of salt lands (silvopastoral systems involving salt-adapted trees, grasses and halophytes), checking waterlogging/seepage (strip plantation along canals or boundary plantations), utilization of waste/sewage water (urban or peri-urban forestry) and assuring livelihood and nutritional security of small and marginal farmers (homegardens and social forestry). AFS play an effective role in improving soil fertility, conserving biodiversity, enhancing carbon sequestration and providing climate change mitigation and adaptation. However, there is a need to involve different stakeholders to design effective AFS for supporting sustainable productivity of land and enhancing biodiversity and ecosystem services at plot and landscape scales, to identify best practices to diversify AFS and better understand soil properties and land use in degraded landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya AK, Kafle N (2009) Land degradation issues in Nepal and its management through agroforestry. J Agric Environ 10:133–143

    Google Scholar 

  • Agroforestry Network and Vi-skogen (2018) Scaling up agroforestry potential, challenges and barriers: a review of environmental, social and economic aspects at the farmer, community and landscape levels. Commissioned by the Agroforestry Network and its partners Agroforestry Sverige, Focali, NIRAS, SIANI, SLU Global, SwedBio at Stockholm Resilience Centre and Vi-skogen

    Google Scholar 

  • Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertilizer trees for sustainable food security in the maize-based production systems of East and Southern Africa. Agron Sustain Dev 30:615–629

    Google Scholar 

  • Alexander S, Aronson J, Whaley O, Lamb D (2016) The relationship between ecological restoration and the ecosystem services concept. Ecol Soc 21(1):34. http://sci-hub.tw/10.5751/ES-08288-210134

  • Amundson R, Berhe A, Hopmans J, Olson C, Sztein AE, Sparks D (2015) Soil and human security in the 21st century. Science 348(6235). http://sci-hub.tw/10.1126/science.1261071

  • Angerer JP, Fox WE, Wolfe E (2015) Land degradation in rangeland ecosystems. In: Shroder J, Sivanpillai R (eds) Biological and environmental hazards, risks, and disasters. Elsevier, pp 277–311

    Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:11.1–11.39

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008a) Global assessment of land degradation and improvement. I. Identification of remote sensing. Report 2008/01, ISRIC-World Soil Information, Wageningen

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008b) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Google Scholar 

  • Bai ZG, Dent DL, Yu Y, de Jong R (2013) Land degradation and ecosystem services. In: Lal R, Lorenz L, Hűttle RF, Schneider BU, Von Braun J (eds) Ecosystem services and carbon sequestration in the biosphere. Springer, Dordrecht, pp 357–381

    Google Scholar 

  • Baig S, Rizvi AR, Jones M (2017) Enhancing resilience through forest landscape restoration: understanding synergies and identifying opportunities (Discussion paper). IUCN, Gland. 16 pp

    Google Scholar 

  • Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortime PE, Okubo S (2018) Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int J Biodivers Sci Ecosyst Serv Manag 14:1–16

    Google Scholar 

  • Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79

    CAS  Google Scholar 

  • Bayala J, Sileshi WG, Coe R, Kalinganire A, Tchoundjeu Z, Sinclair F, Garrity D (2012) Cereal yield response to conservation agriculture practices in dry lands of West Africa: a quantitative synthesis. J Arid Environ 78:13–25

    Google Scholar 

  • Bayala J, Sanou J, Teklehaimanot Z, Kalinganire A, Ouédraogo SJ (2014) Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr Opin Environ Sustain 6:28–34

    Google Scholar 

  • Benites J (1990) Agroforestry systems with potential for acid soils of the humid tropics of Latin America and the Caribbean. For Ecol Manag 36:81–101

    Google Scholar 

  • Bhardwaj DR, Navale MR, Sharma S (2017) Agroforestry practices in temperate regions of the world. In: Dagar JC, Tewari VP (eds) Agroforestry: anecdotal to modern science. Springer, Singapore Pte Ltd, pp 163–187

    Google Scholar 

  • Bradshaw AD (1997) What do we mean by restoration? In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 8–14

    Google Scholar 

  • Cai X, Zhang X, Wang D (2011) Land availability for biofuel production. Environ Sci Technol 45(1):334–339. http://sci-hub.tw/10.1021/es103338e

    CAS  Google Scholar 

  • Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794

    CAS  Google Scholar 

  • Cardinael R, Umulisa V, Toudert A, Olivier A, Bockel L, Bernoux M (2018) Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ Res Lett. http://sci-hub.tw/10.1088/1748-9326/aaeb5f

  • Catacutan DC, van Noordwijk M, Nguyen TH, Öborn I, Mercado AR (2017) Agroforestry: contribution to food security and climate-change adaptation and mitigation in Southeast Asia. White Paper. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Regional Program; Jakarta, Indonesia: ASEAN-Swiss Partnership on Social Forestry and Climate Change

    Google Scholar 

  • Chang SX, Wang W, Wu Y, Zhu Z, Peng X (2017) Temperate agroforestry in China. In: Gordon AM, Newman S, Reyes E, Peri P, Otte J, Arce E, Schneider F (eds) Silvopastoral systems and their contribution to improved resource use and sustainable development goals: evidence from Latin America. FAO, CIPAV. Editorial CIPAV, Cali, 58p

    Google Scholar 

  • Chará J, Reyes E, Peri P, Otte J, Arce E, Schneider F (2018) Silvopastoral systems and their contribution to improved resource use and sustainable development goals: evidence from Latin America. FAO, CIPAV. Editorial CIPAV, Cali, 58p

    Google Scholar 

  • Chatterjee N, Nair PKR, Chakraborty S, Nair VD (2018) Changes in soil carbon stocks across the forest-agroforest-agriculture/pasture continuum in various agroecological regions: a metaanalysis. Agric Ecosyst Environ 266:55–67

    Google Scholar 

  • Chaturvedi RK, Singh JS (2017) Restoration of mine spoil in a dry tropical region: a review. Proc Indian Natn Sci Acad 83:789–844

    Google Scholar 

  • Chaturvedi OP, Kaushal R, Tomar JMS, Prandiyal AK, Panwar P (2014) Agroforestry for wasteland rehabilitation: mined, ravine, and degraded watershed areas. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in agroforestry, vol 10. Springer, New Delhi, pp 233–272

    Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    CAS  Google Scholar 

  • Chazdon R, Brancalion P (2019) Restoring forests as a means to many ends. Science 365:24–25

    CAS  Google Scholar 

  • Clewell A, Aronson J (2013) The SER primer and climate change. Ecolo Manage Restor 14(3):182–186

    Google Scholar 

  • Coelho G (2017) Ecosystem services in Brazilian’s southern agroforestry systems. Trop Subtrop Agroecosyst 20:475–492

    Google Scholar 

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals. Environ Rev 10:41–71

    CAS  Google Scholar 

  • Curtis PB, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361:1108–1111

    CAS  Google Scholar 

  • Dagar JC (1995) Agroforestry systems for the Andaman & Nicobar Islands. Int Tree Crops J 8:107–128

    Google Scholar 

  • Dagar JC (2018) Utilization of degraded saline habitats and poor-quality waters for livelihood security. Scho J Food Nutr 1(3):19

    Google Scholar 

  • Dagar JC (2018a) Ravines: formation, extent, classification, evolution and measures of prevention and control. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, pp 19–67. http://sci-hub.tw/10.1007/978-981-10-8043-2_2

  • Dagar JC (2018b) Perspectives of vegetation ecology and biodiversity for management of ravine lands. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, pp 69–118. http://sci-hub.tw/10.1007/978-981-10-8043-2_3

  • Dagar JC, Gupta SR (2016) Agroforestry: potentials for rehabilitation of degraded lands, constraints and the way forward. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova, New York, pp 47–97

    Google Scholar 

  • Dagar JC, Minhas PS (eds) (2016) Agroforestry for the management of waterlogged saline soils and poor-quality waters, Advances in agroforestry, vol 13. Springer, New Delhi, p 210. http://sci-hub.tw/10.1007/978-81-322-2659-8

    Google Scholar 

  • Dagar JC, Singh AK (eds) (2018) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, p 636

    Google Scholar 

  • Dagar JC, Tewari JC (eds) (2016) Agroforestry research developments. Nova Publishers, New York, p 578

    Google Scholar 

  • Dagar JC, Tewari VP (eds) (2017) Agroforestry: anecdotal to modern science. Springer Nature Singapore Pte Ltd, p 879

    Google Scholar 

  • Dagar JC, Singh AK, Arunachalam, A (eds) (2014a) Agroforestry systems in India: livelihood security and ecosystem services. Advances in Agroforestry. doi: http://sci-hub.tw/10.1007/978-81-322-1662-9

  • Dagar JC, Pandey CB, Chaturvedi CS (2014b) Agroforestry: a way forward for sustaining fragile coastal and island agro-ecosystems. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and environmental services, Advances in Agroforestry, vol 10. Springer, New Delhi, pp 185–232

    Google Scholar 

  • Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) (2016a) Innovative saline agriculture. Springer, Singapore, p 519

    Google Scholar 

  • Dagar JC, Lal K, Ram J, Kumar M, Chodhari SK, Yadav RK, Sharif A, Gurbachan S, Amarinder K (2016b) Eucalyptus geometry in agroforestry on waterlogged saline soils influences plant and soil traits in North-West India. Agric Ecosyst Environ 233:32–45

    Google Scholar 

  • Dagar JC, Yadav RK, Sharma PC (eds) (2019) Research developments in saline agriculture. Springer Nature Singapore Pte Ltd

    Google Scholar 

  • De Groot RS (1992) Functions of nature: evaluation of nature in environmental planning, management and decision making. Wolters-Noordhoff, Groningen

    Google Scholar 

  • De Stefano A, Jacobson MG (2017) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst 92:285–299. http://sci-hub.tw/10.1007/s10457-017-0147-9

    Google Scholar 

  • de Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor Syst 92:285–299

    Google Scholar 

  • Dent D (2007) Chapter 3: Land. In: Mnatsakanian R (ed) Global environment outlook 4: environment for development. United Nations environment programme; Stationery office distributor, pp 81–114

    Google Scholar 

  • Dhyani SK, Samra JS, Ajit HAK, Uma (2007) Forestry to support increased agricultural production: focus on employment generation and rural development. Agric Econ Res Rev 26:179–202

    Google Scholar 

  • Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New York

    Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92:213–219. http://sci-hub.tw/10.1007/s10457-018-0223-9

    Google Scholar 

  • Dregne HE (1977) Generalized map of the status of desertification of arid lands. Report presented in the 1977 United Nations conference on desertification. FAO, UNESCO and WMO

    Google Scholar 

  • Duguma LA, Minang PA, Mpanda M, Kimaro A, Alemagi D (2015) Landscape restoration from a social-ecological system perspective? In: Minang PA, van Noordwijk M, Freeman OE, Mbow C, de Leeuw J, Catacutan D (eds) Climate-smart landscapes: multifunctionality in practice. World Agroforestry Centre (ICRAF), Nairobi, pp 63–73

    Google Scholar 

  • ECHO (2012) Sloping Agricultural Land Technology (SALT): How to farm hilly land without losing soil. Technical Note #72. Mindanao Baptist Rural Life Center Editorial Staff, FL. ECHOcommunity.org

  • Elevitch CR, Mazaroli DN, Ragone D (2018) Agroforestry standards for regenerative agriculture. Sustainability 10:3337. http://sci-hub.tw/10.3390/su10093337

    Google Scholar 

  • Eswaran H, Lal R, Reich P (2001) Land degradation: an overview. In: Bridges E, Hannam I, Oldeman L, de Vries PF, Scherr S, Sompatpanit S (eds) In responses to land degradation. Proceedings of 2nd international conference on land degradation and desertification in Khon Kaen, Thailand. Oxford Press, New Delhi

    Google Scholar 

  • FAO (2008) Conservation and adaptive management of globally important heritage systems (GIAHS), Terminal report. FAO, Rome

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture: managing systems at risk. Rome

    Google Scholar 

  • FAO (2013) Advancing agroforestry on the policy agenda: a guide for decision-makers, by G Buttoud in collaboration with O Ajayi, G Detlefsen, F Place, E Torquebiau. Agroforestry Working Paper no. 1. Food and Agriculture Organization of the United Nations. Rome

    Google Scholar 

  • FAO (2015) Global forest resources assessment 2015. FAO Forestry Paper No. 1//. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO (2016) Trees, forests and land use in drylands: the first global assessment: preliminary findings. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • FAO and ITPS (2015) Status of the World’s Soil Resources (SWSR) – main report. Food and agriculture organization of the united nations and intergovernmental technical panel on soils, Rome

    Google Scholar 

  • Faye MD, Weber JC, Abasse TA, Boureima M, Larwanou M, Bationo AB, Diallo BO, Sigue H, Dakouo JM, Samake O, Sonogo DD (2011) Farmers’ preferences for tree functions and species in the West African Sahel. Forest Tree Livelihoods 20:113–116

    Google Scholar 

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129

    Google Scholar 

  • Festin ES, Tigabu M, Chileshe MN, Syampungani S, Odén PC (2019) Progresses in restoration of post-mining landscape in Africa. J For Res 30:381–396

    Google Scholar 

  • García-Ruiz JM, Beguería S, Nadal-Romero E, González-Hidalgo JC, Lana-Renault N, Sanjuán Y (2015) A meta-analysis of soil erosion rates across the world. Geomorphology 239:160–173

    Google Scholar 

  • Gao LB, Xu HS, Bi HX, Xi WM, Bao B et al (2013) Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China. PLoS One 8(7):e70739. http://sci-hub.tw/10.1371/journal.pone.0070739

    CAS  Google Scholar 

  • Garrity DP, Akinnifesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A et al (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Secur 2:197–214

    Google Scholar 

  • Geist HJ, Lambin EF (2004) Dynamic causal patterns of desertification. BioScience 54(9):817

    Google Scholar 

  • Gibbs HK, Salmon JM (2015) Mapping the world’s degraded lands. Appl Geogr 57:12–21

    Google Scholar 

  • Gichuki L, Brouwer R, Davies J, Vidal A, Kuzee M, Magero C, Walter S, Lara, P, Oragbade C, Gilbey B (2019) Reviving land and restoring landscapes: policy convergence between forest landscape restoration and land degradation neutrality. IUCN, Gland, viii + 34p

    Google Scholar 

  • Gilbey B, Davies J, Metternicht G, Magero C (2019) Taking land degradation neutrality from concept to practice: early reflections on LDN target setting and planning. Environ Sci Policy 100:230–237. http://sci-hub.tw/10.1016/j.envsci.2019.04.007

    Google Scholar 

  • Guerra AJT, Fullen MA, Bezerra JFR, Jorge MCO (2018) Gully erosion and land degradation in Brazil: a case study from São Luís Municipality, Maranhão State. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, pp 195–216. http://sci-hub.tw/10.1007/978-981-10-8043-2_8

  • Gupta SR, Dagar JC (2016a) Agroforestry for ecological restoration of salt-affected lands. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer, Dordrecht, pp 161–182

    Google Scholar 

  • Gupta SR, Dagar JC (2016b) Enhancing environmental services of salt-affected lands through agroforestry. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova, New York, pp 209–244

    Google Scholar 

  • Gupta AR, Kumar R (2014) Biodiversity conservation and ecosystem services of forests in Siwaliks of northern India. Int J Ecol Environ Sci 40(1):15–28

    Google Scholar 

  • Gupta SR, Dagar JC, Jangra R, Gaur A (2019) Tree-based systems for enhancing environmental services of saline environments. In: Dagar JC et al (eds) Research developments in saline agriculture. Springer Nature Singapore Pte Ltd, pp 461–502. http://sci-hub.tw/10.1007/978-981-13-5832-6_16

  • Hansen MC, Potapov PV, Moore IR et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    CAS  Google Scholar 

  • Hanson C, Buckingham K, Dewitt S, Laestadius L (2015) The restoration diagnostic: a method for developing forest landscape restoration strategies by rapidly assessing the status of key success factors. World Resources Institute, Washington. www.wri.org

    Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789. http://sci-hub.tw/10.2134/jeq2007.0509

    CAS  Google Scholar 

  • Hill J, Stellmes M, Udelhoven T, Roder A, Sommer S (2008) Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations. Glob Planet Chang 64:146–157

    Google Scholar 

  • Hillbrand A, Borelli S, Conigliaro M, Olivier A (2017) Agroforestry for landscape restoration: exploring the potential of agroforestry to enhance the sustainability and resilience of degraded landscapes. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • HLPE (High Level Panel of Experts on Food Security and Nutrition) (2017) Sustainable forestry for food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome

    Google Scholar 

  • Hobbs RJ, Cramer VA (2008) Restoration ecology: interventionist approaches for restoring and maintaining ecosystem function in the face of rapid. Annu Rev Environ Resour 33:39–61. http://sci-hub.tw/10.1016/j.cosust.2013.10.013

    Google Scholar 

  • Holl KD (2017) Research directions in tropical forest restoration. Ann Mo Bot Gard 102:237–250. http://sci-hub.tw/10.3417/2016036

    Google Scholar 

  • IIASTD (2009) Agriculture at a crossroads: global report. International Assessment of Agricultural Knowledge, Science and Technology for Development (IIASTD). Island Press, Washington, DC. http://www.unep.org/dewa/Assessments/Ecosystems/IAASTD/tabid/105853/Default.aspInstitute

  • IPBES (2018) Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: Scholes R, Montanarella L, Brainich A, et al (eds) IPBES secretariat, Bonn, 44 pages

    Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field CB (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 1–32

    Google Scholar 

  • IPCC (2018) Global Warming of 1.5°C. In: Masson-Delmotte V et al (eds) An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

    Google Scholar 

  • IUCN and WRI (2014) A guide to the Restoration Opportunities Assessment Methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. Working Paper (Road-test edition). IUCN, Gland, 125p

    Google Scholar 

  • IUCN, Davies J, Gudka M, Laban P, Metternicht G, Alexander S, Hannam I, et al (2015) Land degradation neutrality: implications and opportunities for conservation. IUCN, Gland

    Google Scholar 

  • Jama B, Zeila A (2005) Agroforestry in the drylands of eastern Africa: a call to action. ICRAF working paper – no. 1. World Agroforestry Centre, Nairobi

    Google Scholar 

  • Jamnadass R, Place F, Torquebiau E, Malézieux E, Iiyama M, Sileshi GW, Kehlenbeck K, Masters E, McMullin S, Weber JC, Dawson IK (2013) Agroforestry, food and nutritional security. ICRAF working paper no. 170. Nairobi, World Agroforestry Centre. doi:http://sci-hub.tw/10.5716/WP13054.PDF

  • Jehangir IA, Khan MH, Bhat ZA (2013) Strategies of increasing crop production and productivity in problem soils. Int J For Soil Erosion 3(2):73–78

    Google Scholar 

  • Jemal O, Daniel C-C, Van Meine N (2018) Local agroforestry practices for food and nutrition security of smallholder farm households in Southwestern Ethiopia. Sustainability 10:2722

    Google Scholar 

  • Jones HP, Jones PC, Barbier EB, Blackburn RC, Rey Benayas JM, Holl KD et al (2018) Restoration and repair of Earth’s damaged ecosystems. Proc R Soc Lond B Biol Sci 285(1873):20172577. http://sci-hub.tw/10.1098/rspb.2017.2577

    Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85:1–8. http://sci-hub.tw/10.1007/s10457-012-9517-5

    Google Scholar 

  • Jose S, Dollinger J (2019) Silvopasture: a sustainable livestock production system. Agrofor Syst 93:1–9

    Google Scholar 

  • Jose S, Gold MA, Garrett HE (2012) The future of temperate agroforestry in the United States. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Advances in agroforestry, vol 9. © Springer Science + Business Media, Dordrecht, pp 217–245, doi:http://sci-hub.tw/10.1007/978-94-007-4676-3_14

  • Kassie B, Rötter R, Hengsdijk H, Asseng S, Van Ittersum M, Kahiluoto H, Van Keulen H (2014) Climate variability and change in the Central Rift Valley of Ethiopia: challenges for rainfed crop production. J Agric Sci 152:58–74

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002a) Carbon storage and nitrogen cycling in silvi-pastoral systems on a sodic soil in India. Agrofor Syst 54:21–29

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002b) Bioamelioration of a sodic soil by silvopastoral system in northwestern India. Agrofor Syst 54:13–20

    Google Scholar 

  • Kim D-G, Kirschbaum MUF, Beedy TL (2016) Carbon sequestration and net emissions of CH4 and N2O under agroforestry: synthesizing available data and suggestions for future studies. Agric Ecosyst Environ 226:65–78

    CAS  Google Scholar 

  • Kitalyi A, Nyadzi G, Lutkamu M, Swai R, Gama B (2010) New climate, new agriculture: how agroforestry contributes to meeting the challenges of agricultural development in Tanzania. Tanzan J Agric Sci 10:1–7

    Google Scholar 

  • Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Google Scholar 

  • Kort J, Turnock R (1999) Carbon reservoir and biomass in Canadian prairie shelterbelts. Agrofor Syst 44:175–186

    Google Scholar 

  • Kort J, Richardson J, Soolanayakanahally R, Schroeder W (2014) Innovations in temperate agroforestry: the 13th North American Agroforestry Conference. Agrofor Syst 88:563–567

    Google Scholar 

  • Kumari C, Gupta SR, Dagar JC, Singh V, Kumar M (2018) Carbon sequestration and microbial biodiversity in agroforestry systems for saline water irrigated semi-arid hyperthermic camborthids regions of north-west India. J Soil Salinity Water Qual 10:133–148

    Google Scholar 

  • Kuyah S, Öborn I, Jonsson M, Dahlin AS, Barrios E, Muthuri C, Malmer A, Nyaga J, Magaju C, Namirembe S, Nyberg Y, Sinclair FL (2016) Trees in agricultural landscapes enhance provision of ecosystem services in sub-Saharan Africa. Int J Biodivers Sci Ecosyst Serv Manag 12:255–273

    Google Scholar 

  • Lal R (1994) Sustainable land use systems and soil resilience. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. Wallingford, CAB-International, pp 41–67

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    CAS  Google Scholar 

  • Lal R (2014) Societal value of soil carbon. J Soil Water Conserv 69(6):186A–192A

    Google Scholar 

  • Lal R (2018) Sequestering carbon in ravine-prone and eroded landscapes. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, pp 445–453. http://sci-hub.tw/10.1007/978-981-10-8043-2_20

  • Le QB, Tamene L, Vlek PLG (2012) Multi-pronged assessment of land degradation in West Africa to assess the importance of atmospheric fertilization in masking the processes involved. Glob Planet Chang 92–93:71–81

    Google Scholar 

  • Le QB, Nkonya E, Mirzabaev A (2016) Biomass productivity-based mapping of global land degradation hotspots. In: Kwon H-Y, Nkonya E, Johson T, Graw V, Kato E, Kihiu E (eds) Economics of land degradation and improvement – a global assessment for sustainable development. Springer, Cham, pp 55–84. http://sci-hub.tw/10.1007/978-3-319-19168-3_1

    Google Scholar 

  • Leakey RRB (2012) Multifunctional agriculture and opportunities for agroforestry: Implications of IAASTD. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use, Advances in agroforestry, vol 9. Springer, pp 203–216

    Google Scholar 

  • Lewis S, Wheeler CE, Mitchard ETA, Koch A (2019) Restoring natural forests is the best way to remove atmospheric carbon. Nature 568:25–28. http://sci-hub.tw/10.1038/d41586-019-01026-8

    CAS  Google Scholar 

  • Li Z, Fang H (2016) Impacts of climate change on water erosion: a review. Earth Sci Rev 163:94–117. http://sci-hub.tw/10.1016/J.EARSCIREV.2016.10.004

    Google Scholar 

  • Lovell ST, Dupraz C, Gold M, Jose S, Revord R, Stanek E, Wolz KJ (2017) Temperate agroforestry research: considering multifunctional woody polycultures and the design of long-term field trials. Agrofor Syst. http://sci-hub.tw/10.1007/s10457-017-0087-4

  • Maginnis S, Rietbergen-McCracken J, Jackson W (2005) Introduction; restoring forest landscapes: an introduction to the art and science of forest landscape restoration. Technical Series No. 23. ITTO, Yokohama. http://www.itto.or.jp/live/Live_Server/1064/ts23e.pdf

  • Mangalassery S, Dayal D, Meena SL, Ram B (2014) Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Curr Sci 107:1200–1293

    Google Scholar 

  • Mansourian S, Parrotta J (eds) (2018) Forest landscape restoration: integrated approaches to support effective implementation. Routledge, London, 249 p

    Google Scholar 

  • Malchair S, De Boeck HJ, Lemmens CM, Ceulemans R, Merckx R, Nijs I, Carnol M (2010) Diversity–function relationship of ammonia-oxidizing bacteria in soils among functional groups of grassland species under climate warming. Appl Soil Ecol 44:15–23

    Google Scholar 

  • McCarty JP, Zedler JB (2002) Restoration, ecosystem. In: Mooney HA, Canadell JG (eds) The earth system; Biological and ecological dimensions of global environmental change, vol 2. Wiley, Chichester, pp 532–539

    Google Scholar 

  • McNeely JA, Schroth G (2006) Agroforestry and biodiversity conservation – traditional practices, present dynamics, and lessons for the future. Biodivers Conserv 15:549–554. http://sci-hub.tw/10.1007/s10531-005-2087-3

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005a) Ecosystems and human well-being: synthesis. A framework for assessment. Island Press, Washington, DC

    Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005b) Ecosystems and human well-being: desertification synthesis millennium ecosystem assessment. World Resources Institute, Washington, DC. www.wri.org

    Google Scholar 

  • Mokgolodi NC, Setshogo MP, Shi LL, Liu YJ, Ma C (2011) Achieving food and nutritional security through agroforestry: a case of Faidherbia albida in sub-Saharan Africa. For Stud China 13:123–131

    Google Scholar 

  • Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci U S A 104:13268–13272

    CAS  Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261:1654–1663

    Google Scholar 

  • Nair PKR (1984) Soil productivity aspects of agroforestry. ICRAF Science and Practice of Agroforestry I. International Council for Research in Agroforestry, Nairobi

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic, Dordrecht

    Google Scholar 

  • Nair PKR (1997) Directions in tropical agroforestry research: past, present, and future. Agrofor Syst 38:223–246

    Google Scholar 

  • Nair PKR (2007) The coming of age of agroforestry. J Sci Food Agric 87:1613–1619

    CAS  Google Scholar 

  • Nair PKR (2011) Methodological challenges in estimating carbon sequestration potential of agroforestry systems. In: Kumar B, Nair PKR (eds) Carbon sequestration potential of agroforestry systems: opportunities and challenges. Springer Science, Dordrecht, pp 3–16

    Google Scholar 

  • Nair PKR (2012a) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253

    Google Scholar 

  • Nair PKR (2012b) Climate change mitigation: a low-hanging fruit of agroforestry. In: Nair PKR, Garrity DP (eds) Agroforestry: the future of global land use, Advances in agroforestry, vol 9. Springer, New York, pp 31–67

    Google Scholar 

  • Nair PKR, Garrity D (2012) Agroforestry research and development: the way forward. In: Nair PKR, Garrity DP (eds) Agroforestry: the future of global land use, Advances in agroforestry, vol 9. Springer, Dordrecht, pp 515–531

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. In: Sparks DL (ed) Advances in agronomy, vol 108. Academic, New York, pp 237–307

    Google Scholar 

  • Nkonya E, Mirzabaev A, von Braun J (2016) Economics of land degradation and improvement: an introduction and overview. In: Kwon H-Y, Nkonya E, Johson T, Graw V, Kato E, Kihiu E (eds) Economics of land degradation and improvement – a global assessment for sustainable development, Springer Cham, pp 1-14. doi:http://sci-hub.tw/10.1007/978-3-319-19168-3_1

  • Nkonya E, Gerber N, Baumgartner P, von Braun J, De Pinto A, Graw V, et al (2011) The economics of desertification, land degradation, and drought—toward an integrated global assessment. ZEF-Discussion Papers on Development Policy No. 150, Center for Development Research (ZEF)

    Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosys Environ 104:359–377

    CAS  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlönvoigt AM, Thevathasan NV (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agrofor Syst 68:27–36. http://sci-hub.tw/10.1007/s10457-005-5963-7

    Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1990) World map of the status of human-induced soil degradation: An explanatory note, 2nd edn. International Soil Reference and Information Centre, Wageningen

    Google Scholar 

  • Olson RK, Schoeneberger MM, Aschmann SG (2000) An ecological foundation for temperate agroforestry. In: Garrett HE, Rietveld WJ, Fisher RF (eds) North American Agroforestry: an integrated science and practice. American Society of Agronomy, Inc, Madison, WI, pp 31–62

    Google Scholar 

  • Ordway EM, Asner GP, Lambin EF (2017) Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ Res Lett 12:044015

    Google Scholar 

  • Peng XB, Zhang YY, Cai J, Jiang ZM, Zhang SX (2009) Photosynthesis, growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau. Agrofor Syst 76:569–577

    Google Scholar 

  • Peri PL, Banegas N, Gasparri I, Carranza C, Rossner B, Martínez Pastur G, Cavallero L, López DR, Loto D, Fernández P, Powel P, Ledesma M, Pedraza R, Albanesi A, Bahamonde H, Eclesia RP, Piñeiro G (2017) Carbon sequestration in temperate silvopastoral systems, Argentina, Chapter 19. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty, Advances in agroforestry, vol 12. Springer International Publishing, pp 453–478

    Google Scholar 

  • Poschen P (1986) An evaluation of the Acacia albida-based agroforestry practices in the Hararghe highlands of Eastern Ethiopia. Agrofor Syst 4:129–143

    Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114:1571–1596

    Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    CAS  Google Scholar 

  • Qiao X, Sai L, Chen X, Xue L, Lei J (2019) Impact of fruit-tree shade intensity on the growth, yield, and quality of intercropped wheat. PLoS One 14(4):e0203238. http://sci-hub.tw/10.1371/journal.pone.0203238

    CAS  Google Scholar 

  • Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC (2018) Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agrofor Syst. http://sci-hub.tw/10.1007/s10457-017-0131-4

  • Reeves MC, Baggett LS (2014) A remote sensing protocol for identifying rangelands with degraded productive capacity. Ecol Indic 43:172–182

    Google Scholar 

  • Reij C, Garrity D (2016) Scaling up farmer-managed natural regeneration in Africa to restore degraded landscapes. Biotropica 48:834–843

    Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    CAS  Google Scholar 

  • Rey Benayas JM, Bullock JM (2012) Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15:883–899

    Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847–851

    CAS  Google Scholar 

  • Rodrigues SC (2018) Some practices of gully rehabilitation in Central Brazil. In: Dagar JC, Singh AK (eds) Ravine lands: greening for livelihood and environmental security. Springer Nature Singapore Pte Ltd, pp 183–193. http://sci-hub.tw/10.1007/978-981-10-8043-2_7

  • Rodrigues RC, Araújo RA, Costa CS, Lima AJ et al (2015) Soil microbial biomass in an agroforestry system of Northeast Brazil. Trop Grassl-Forrajes Trop 3:41–48

    Google Scholar 

  • Sajjapongse A, Qing Z, Yibing C, Hongzhong W (2002) Development of sustainable agriculture on sloping lands in China. In: 12th ISCO conference, Beijing, China, pp 335–341

    Google Scholar 

  • Salim MVC, Miller RP, Ticona-Benavente CA, van Leeuwen J, Alfaia SS (2018) Soil fertility management in indigenous homegardens of Central Amazonia, Brazil. Agrofor Syst. http://sci-hub.tw/10.1007/s10457-017-0105-6

  • Santos PZF, Crouzeilles R, Sansevero JBB (2019) Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manag 433:140–145

    Google Scholar 

  • Schoeneberger MM, Bentrup G, de Gooijer H, Soolanayakamahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation for agriculture. J Soil Water Conserv 67:128–136

    Google Scholar 

  • SER (2004) International primer on ecological restoration science & Policy Working Group (Version 2, October, 2004). Society for Ecological Restoration, Washington, DC

    Google Scholar 

  • Sharma PD, Sarkar AK (2005) Managing acid soils for enhancing soil productivity. NRM Division, ICAR, New Delhi, p 22

    Google Scholar 

  • Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev 29:3886–3897

    Google Scholar 

  • Shimamoto CY, Padial AA, da Rosa CM, Marques MCM (2018) Restoration of ecosystem services in tropical forests: a global meta-analysis. PLoS One 13(12):e0208523. http://sci-hub.tw/10.1371/journal.pone.0208523

    Google Scholar 

  • Siachoono SM (2010) Land reclamation efforts in Haller Park, Mombasa. Int J Biodivers Conserv 2:19–25

    Google Scholar 

  • Sida TS, Baudron F, Kim H, Giller KE (2018) Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric For Meteorol 248:339–347

    Google Scholar 

  • Sileshi GW (2016) The magnitude and spatial extent of Faidherbia albida influence on soil properties and primary productivity in drylands. J Arid Environ 132:1–14

    Google Scholar 

  • Sileshi GW, Mafongoya PL, Akinnifesi FK et al (2014) Fertilizer trees. Encyclopedia of agriculture and food systems, vol 1. Elsevier, San Diego, pp 222–234

    Google Scholar 

  • Sinare H, Gordon LJ (2015) Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa. Agric Ecosyst Environ 200:186–199

    Google Scholar 

  • Singh AN, Raghubanshi AS, Singh JS (2002) Plantations as a tool for mine spoil restoration. Curr Sci 82:1436–1441

    CAS  Google Scholar 

  • Singh AN, Raghubanshi AS, Singh JS (2004) Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, India. Ecol Eng 22:123–140

    Google Scholar 

  • Singh AK, Arunachalam A, Ngachan SV, Mohapatra KP, Dagar JC (2014a) From shifting cultivation to integrating farming: experience of agroforestry development in the northeastern Himalayan region. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services. Springer, New Delhi, pp 57–86

    Google Scholar 

  • Singh JS, Singh SP, Gupta SR (2014b) Ecology, environmental science and conservation. S. Chand, New Delhi

    Google Scholar 

  • Singh VP, Sinha RB, Nayak D, Neufeldt, H, van Noordwijk, M, Rizvi J (2016) The national agroforestry policy of India: experiential learning in development and delivery phases. ICRAF Working Paper No. 240. World Agroforestry Centre, New Delhi. doi: doi:http://sci-hub.tw/10.5716/WP16143.PDF

  • Sivakumar MVK (2007) Interactions between climate and desertification. Agric For Meteorol 142:143–155

    Google Scholar 

  • Siriri D, Wilson J, Coe R, Tenywa MM, Bekunda MA, Ong CK, Black CR (2012) Trees improve water storage and reduce soil evaporation in agroforestry systems on bench terraces in SW Uganda. Agrofor Syst 87:45–58

    Google Scholar 

  • Sistla SA, Roddy AB, Williams NE, Kramer D, Stevens K, Allison SD (2016) Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS One 2016(11):e0162529

    Google Scholar 

  • Solanki MS (1981) Forests as a sources of food, vols. I and II. FAO Regional Office for Asia and the Pacific, Maliwan Mansion, PhraAtit Road, Bangkok

    Google Scholar 

  • Song XP, Hansen MC, Stehman SV, Potapov PV et al (2018) Global land change from 1982 to 2016. Nature 560:639–643

    CAS  Google Scholar 

  • Soni ML, Subbulakshmi V, Yadava ND, Tewari JC, Dagar JC (2016) Silvopastoral agroforestry systems: lifeline for dry regions. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova, New York, pp 245–305

    Google Scholar 

  • Steffen W, Sanderson A, Tyson PD, Jager J, Matson PM, Moore B III, Oldfield F, Richardson K, Schnellnhuber HJ, Turner BL II, Wasson RJ (2004) Global change and the Earth system: a Planet under pressure. Springer, New York

    Google Scholar 

  • Sutton PC, Anderson SJ, Costanza R, Kubiszewski I (2016) The ecological economics of land degradation: impacts on ecosystem service values. Ecol Econ 129:182–192. http://sci-hub.tw/10.1016/j.ecolecon.2016.06.016

    Google Scholar 

  • Szabolcs I (1994) Soil and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Szott LT, Palm CA, Sanchez PA (1991) Agroforestry in acid soils of the humid tropics. Adv Agron 45

    Google Scholar 

  • Teketay D, Tegineh A (1991a) Traditional tree crop based agroforestry in coffee producing areas of Harerge, Eastern Ethiopia. Agrofor Syst 16:257–267

    Google Scholar 

  • Teketay D, Tegineh A (1991b) Shade trees of coffee in Harerge, Eastern Ethiopia. Int Tree Crops J 7:17–27

    Google Scholar 

  • Tetteh EN, Ampofo KT, Logah V (2015a) Adopted practices for mined land reclamation in Ghana: a case study of Anglogold Ashanti Iduapriem mine ltd. J Sci Technol 35:77–88

    Google Scholar 

  • Tetteh EN, Logah V, Ampofo KT, Partey ST (2015b) Effect of duration of reclamation on soil quality indicators of a surface – mined acid forest Oxisol in South-Western Ghana. West Afr J App Ecol 23:63–72

    Google Scholar 

  • Tewari JC, Moola-Ram RMM, Dagar JC (2014) Livelihood improvements and climate change adaptations through agroforestry in hot arid environments. In: Dagar JC, Singh AK, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services, Advances in agroforestry, vol 10. Springer, New York, pp 155–184

    Google Scholar 

  • Tewari JC, Raghuvanshi MS, Pareek K, Stanzin J, Partap R, Dagar JC (2016) Traditional agroforestry system in Indian cold arid zone: case study of a village located near Leh, Laddkh. In: Dagar JC, Tewari JC (eds) Agroforestry research developments. Nova, New York, pp 181–195

    Google Scholar 

  • Thevathasan NV, Gordon AM (1997) Poplar leaf biomass distribution and nitrogen dynamics in a poplar-barley intercropped system in southern Ontario, Canada. Agrofor Syst 37:79–90

    Google Scholar 

  • Thevathasan NV, Gordon AM, Bradley R et al (2012) Agroforestry research and development in Canada: the way forward. In: Nair PK, Garrity R (eds) Agroforestry – the future of global land use, Advances in Agroforestry, vol 9, pp 248–283. http://sci-hub.tw/10.1007/978-94-007-4676-3_15

    Google Scholar 

  • Toderich K, Shuyskaya E, Taha F, Matsuo N, Ismail S, Aralova D, Radjabov T (2013) Integrating agroforestry and pastures for soil salinity management in dryland ecosystems in Aral Sea basin. In: Shahid SA, Abdelfattah MA, Taha FK (eds) Developments in soil salinity assessment and reclamation-innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer, Dordrecht, pp 579–602

    Google Scholar 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150–161

    Google Scholar 

  • Udawatta RP, Gantzer CJ, Jose S (2017) Agroforestry practices and soil ecosystem services. Soil health and intensification of agroecosystems, pp 305–333. © 2017 Elsevier Inc. doi:http://sci-hub.tw/10.1016/B978-0-12-805317-1.00014-2

  • Udawatta P, Rankoth RL, Jose S (2019) Agroforestry and Biodiversity. Sustainability 11(10):2879. http://sci-hub.tw/10.3390/su11102879

    Google Scholar 

  • UNCCD (2017) Global land outlook, First Edition. UNCCD, Bonn. ISBN: 978-92-95110-48-9

    Google Scholar 

  • UNEP (2017) The emissions gap report 2017. United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • USDA-NRCS (1998) Global desertification vulnerability map. U.S. Department of Agriculture, Natural Resources Conservation Science (USDA-NRCS). Accessed 31 May 31 2014. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/nedc/training/soil/?cid=nrcs142p2_054003

  • Vallejo VE, Roldán F, Dick RP (2010) Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol Fertil Soils 46:577–587

    CAS  Google Scholar 

  • Varsha KM, Raj AK, Kurien EK, Bastin B, Kunhamu TK, Pradeep KP (2019) High density silvopasture systems for quality forage production and carbon sequestration in humid tropics of Southern India. Agrofor Syst. http://sci-hub.tw/10.1007/s10457-016-0059-0

  • Velmurugan A, Swarnam TP, Lal R (2015) Effect of land shaping on soil properties and crop yield in tsunami inundated coastal soils of Andaman Islands. Agric Ecosyst Environ 206:1–9

    CAS  Google Scholar 

  • Velmurugan A, Dam Roy S, Dagar JC, Swarnam TP (2016) Innovative technologies to sustain saline island agriculture in the scenario of climate change: a case study from Andaman Islands, India. In: Dagar JC, Sharma PC, Sharma DK (eds) Innovative saline agriculture. Springer, pp 387–417

    Google Scholar 

  • Verchot LV, Noordwijk MV, Kandji S, Tomich T et al (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strateg Glob Change 12:901–918

    Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME (eds) Plant soil interaction at low pH: principals and management. Kluwer Academic, Dordrecht, pp 5–19

    Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:194008291772066. http://sci-hub.tw/10.1177/1940082917720667

    Google Scholar 

  • Wekesa A, Jönsson M (2014) Sustainable agriculture land management – a training manual. Vi Agroforestry, Stockholm (Illustrations used with permission from Vi Agroforestry)

    Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij AP (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2680

    Google Scholar 

  • Wicke B, Edward SWM, Akanda R, Stille L, Singh RK, Awan AR, Mahmood K, Faaij AP (2013) Biomass production in agroforestry and forestry systems on salt affected soils in South Asia: exploration of the GHG balance and economic performance on three case studies. J Environ Manag 127:324–334

    Google Scholar 

  • World Bank (2004) Sustaining forests: a development strategy. The World Bank, Washington, DC. isbn:0-8213-5755-7

    Google Scholar 

  • WRI (2008) World resources 2008: roots of resilience—growing the wealth of the poor. World Resources Institute, Washington, DC

    Google Scholar 

  • WWF (2010) Living planet report 2010: biodiversity, biocapacity and development. WWF International, Gland

    Google Scholar 

  • WWF (2018) Living planet report −2018: aiming higher. Grooten M, Almond REA (eds) WWF, Gland

    Google Scholar 

  • Yamba B, Larwanou M, Hassane A, Reij C (2005) Niger study: Sahel pilot study report. U.S. Agency for International Development and International Resources Group, Washington, DC

    Google Scholar 

  • Yin F, Mao RZ, Fu BJ, Liu XJ, Zhang XM (2008) Horizontal variations of nutrient uptake and apparent loss in Jujube/crop intercropping ecosystem. Acta Ecol Sin 28(6):2715–2721

    CAS  Google Scholar 

  • Young A (1997) Agroforestry for soil management, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Zheng SJ (2010) Crop production on acid soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184

    Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F, van Noordwijk M, Xu JC (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. Working Paper 179. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Bogor. doi:http://sci-hub.tw/10.5716/WP14064.PDF

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. doi:http://sci-hub.tw/10.1038/srep29987 (Illustrations shared under the licence CC BY 4.0)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S.R., Dagar, J.C., Teketay, D. (2020). Agroforestry for Rehabilitation of Degraded Landscapes: Achieving Livelihood and Environmental Security. In: Dagar, J.C., Gupta, S.R., Teketay, D. (eds) Agroforestry for Degraded Landscapes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4136-0_2

Download citation

Publish with us

Policies and ethics