Skip to main content

Taxonomy of Reinforcement Learning Algorithms

  • Chapter
  • First Online:
Deep Reinforcement Learning

Abstract

In this chapter, we introduce and summarize the taxonomy and categories for reinforcement learning (RL) algorithms. Figure 3.1 presents an overview of the typical and popular algorithms in a structural way. We classify reinforcement learning algorithms from different perspectives, including model-based and model-free methods, value-based and policy-based methods (or combination of the two), Monte Carlo methods and temporal-difference methods, on-policy and off-policy methods. Most reinforcement learning algorithms can be classified under different categories according to the above criteria, hope this helps to provide the readers some overviews of the full picture before introducing the algorithms in detail in later chapters.

Map of reinforcement learning algorithms. Boxes with thick lines denote different categories, others denote specific algorithms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of the international conference on machine learning (ICML), pp 37–50

    Google Scholar 

  • Bellemare MG, Dabney W, Munos R (2017) A distributional perspective on reinforcement learning. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 449–458. http://JMLR.org

  • Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D, Pietquin O, et al (2017) Noisy networks for exploration. arXiv:170610295

    Google Scholar 

  • Fujimoto S, van Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. arXiv:180209477

    Google Scholar 

  • Ha D, Schmidhuber J (2018) Recurrent world models facilitate policy evolution. In: Advances in neural information processing systems, pp 2450–2462

    Google Scholar 

  • Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv:180101290

    Google Scholar 

  • Heess N, Sriram S, Lemmon J, Merel J, Wayne G, Tassa Y, Erez T, Wang Z, Eslami S, Riedmiller M, et al (2017) Emergence of locomotion behaviours in rich environments. arXiv:170702286

    Google Scholar 

  • Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, et al (2018) QT-Opt: Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv:180610293

    Google Scholar 

  • Li Y (2017) Deep reinforcement learning: an overview. arXiv:170107274

    Google Scholar 

  • Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control with deep reinforcement learning. arXiv:150902971

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533

    Article  Google Scholar 

  • Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning (ICML), pp 1928–1937

    Google Scholar 

  • Munos R, Stepleton T, Harutyunyan A, Bellemare M (2016) Safe and efficient off-policy reinforcement learning. In: Advances in Neural Information Processing Systems, pp 1054–1062

    Google Scholar 

  • Nagabandi A, Kahn G, Fearing RS, Levine S (2018) Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning. In: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, Piscataway, pp 7559–7566

    Chapter  Google Scholar 

  • Racanière S, Weber T, Reichert D, Buesing L, Guez A, Rezende DJ, Badia AP, Vinyals O, Heess N, Li Y, et al (2017) Imagination-augmented agents for deep reinforcement learning. In: Advances in neural information processing systems, pp 5690–5701

    Google Scholar 

  • Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. Preprint, arXiv:1511.05952

    Google Scholar 

  • Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In: International Conference on Machine Learning (ICML), pp 1889–1897

    Google Scholar 

  • Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arXiv:170706347

    Google Scholar 

  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484

    Article  Google Scholar 

  • Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T, et al (2017) Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv:171201815

    Google Scholar 

  • Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot M, Sifre L, Kumaran D, Graepel T, et al (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419):1140–1144

    Article  MathSciNet  Google Scholar 

  • Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  • Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: Advances in neural information processing systems, pp 1057–1063

    Google Scholar 

  • Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double Q-learning. In: Thirtieth AAAI conference on artificial intelligence

    Google Scholar 

  • Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures for deep reinforcement learning. In: International conference on machine learning, pp 1995–2003

    Google Scholar 

  • Watkins CJ, Dayan P (1992) Q-learning. Mach. Learn. 8(3–4):279–292

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Yu, T. (2020). Taxonomy of Reinforcement Learning Algorithms. In: Dong, H., Ding, Z., Zhang, S. (eds) Deep Reinforcement Learning. Springer, Singapore. https://doi.org/10.1007/978-981-15-4095-0_3

Download citation

Publish with us

Policies and ethics