Skip to main content

Introduction to Deep Learning

  • Chapter
  • First Online:
Deep Reinforcement Learning

Abstract

This chapter aims to briefly introduce the fundamentals for deep learning, which is the key component of deep reinforcement learning. We will start with a naive single-layer network and gradually progress to much more complex but powerful architectures such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We will end this chapter with a couple of examples that demonstrate how to implement deep learning models in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://alexlenail.me/NN-SVG/LeNet.html.

  2. 2.

    https://github.com/tensorflow/tensorflow.

  3. 3.

    https://github.com/tensorlayer/tensorlayer.

  4. 4.

    The full code of the MLP example is available at https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials.

  5. 5.

    The full source code of the CNN example is available at https://github.com/tensorlayer/tensorlayer/tree/master/examples/basic_tutorials.

  6. 6.

    The full source code of chatbot is available at https://github.com/tensorlayer/seq2seq-chatbot.

References

  • Abadi M, Barham P, Chen J, Davis A, Dean J, Devin M, Geoffrey S, Irving G, Devin M, Kudlur M, Manjunath J, Monga R, Moore S, Murray DG, Derek B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Berkeley

    Google Scholar 

  • Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Proceedings of the international conference on learning representations (ICLR)

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  • Bottou L, Bousquet O (2007) The tradeoffs of large scale learning. In: Proceedings of the 20th international conference on neural information processing systems. Advances in neural information processing systems, vol 20, pp 161–168

    Google Scholar 

  • Cao Z, Simon Z, Wei SE, Sheikh SE (2017) Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  • Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)

    Google Scholar 

  • Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. Preprint. arXiv:14123555

    Google Scholar 

  • Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (long and short papers). Association for Computational Linguistics, Minneapolis, pp 4171–4186. https://doi.org/10.18653/v1/N19-1423

  • Dong H, Supratak A, Mai L, Liu F, Oehmichen A, Yu S, Guo Y (2017a) TensorLayer: a versatile library for efficient deep learning development. In: Proceedings of the ACM Multimedia (MM). http://tensorlayer.org

  • Dong H, Zhang J, McIlwraith D, Guo Y (2017b) I2t2i: learning text to image synthesis with textual data augmentation. In: Proceedings of the IEEE international conference on image processing (ICIP)

    Google Scholar 

  • Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159

    MathSciNet  MATH  Google Scholar 

  • Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the international conference on machine learning (ICML), pp 1050–1059

    Google Scholar 

  • Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the international conference on artificial intelligence and statistics (AISTATS), pp 315–323

    Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the neural information processing systems conference. Advances in neural information processing systems

    Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. http://www.deeplearningbook.org

    MATH  Google Scholar 

  • Hara K, Saitoh D, Shouno H (2016) Analysis of dropout learning regarded as ensemble learning. In: Proceedings of the international conference on artificial neural networks (ICANN). Springer, Berlin, pp 72–79

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034

    Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  • Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. Preprint. arXiv:12070580

    Google Scholar 

  • Hochreiter S, Hochreiter S, Schmidhuber J, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. Preprint. arXiv:170404861

    Google Scholar 

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint. arXiv:150203167

    Google Scholar 

  • James S, Wohlhart P, Kalakrishnan M, Kalashnikov D, Irpan A, Ibarz J, Levine S, Hadsell R, Bousmalis K (2019) Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 12627–12637

    Google Scholar 

  • Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network architectures. In: International conference on machine learning, pp 2342–2350

    Google Scholar 

  • Kingma D, Ba J (2014) Adam: a method for stochastic optimization. In: Proceedings of the international conference on learning representations (ICLR)

    Google Scholar 

  • Ko T, Peddinti V, Povey D, Khudanpur S (2015) Audio augmentation for speech recognition. In: Annual conference of the international speech communication association

    Google Scholar 

  • Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Technical Report. Citeseer

    Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  • LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

    Article  Google Scholar 

  • Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  • Lee JY, Dernoncourt F (2016) Sequential short-text classification with recurrent and convolutional neural networks. In: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies. Association for Computational Linguistics, San Diego, pp 515–520. https://doi.org/10.18653/v1/N16-1062

  • Liao B, Zhang J, Cai M, Tang S, Gao Y, Wu C, Yang S, Zhu W, Guo Y, Wu F (2018a) Dest-ResNet: a deep spatiotemporal residual network for hotspot traffic speed prediction. In: 2018 ACM multimedia conference on multimedia conference. ACM, New York, pp 1883–1891

    Google Scholar 

  • Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018b) Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. ACM, New York, pp 537–546

    Chapter  Google Scholar 

  • Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer N (2018) Generating wikipedia by summarizing long sequences. In: International conference on learning representations. https://openreview.net/forum?id=Hyg0vbWC-

  • Luong T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 conference on empirical methods in natural language processing. Association for Computational Linguistics, Lisbon, pp 1412–1421. https://doi.org/10.18653/v1/D15-1166

  • Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011) Learning word vectors for sentiment analysis. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, HLT ’11, vol 1. Association for Computational Linguistics, Stroudsburg, pp 142–150. http://dl.acm.org/citation.cfm?id=2002472.2002491

    Google Scholar 

  • Mikolov T, Karafiát M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neural network based language model. In: INTERSPEECH 2010, 11th annual conference of the international speech communication association, Makuhari

    Google Scholar 

  • Nallapati R, Zhai F, Zhou B (2017) SummaRuNNer: a recurrent neural network based sequence model for extractive summarization of documents. In: Proceedings of the thirty-first AAAI conference on artificial intelligence, AAAI’17. AAAI Press, Palo Alto, pp 3075–3081

    Google Scholar 

  • Ng AY, Jordan MI (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive Bayes. In: Proceedings of the neural information processing systems. Advances in neural information processing systems. Conference, pp 841–848

    Google Scholar 

  • Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the international conference on computer vision (ICCV), pp 1520–1528

    Google Scholar 

  • Olah C (2015) Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

  • Peng XB, Andrychowicz M, Zaremba W, Abbeel P (2018) Sim-to-real transfer of robotic control with dynamics randomization. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, Piscataway, pp 1–8

    Google Scholar 

  • Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. In: Proceedings of the international conference on machine learning (ICML)

    Google Scholar 

  • Rish I et al (2001) An empirical study of the naive Bayes classifier. In: International joint conference on artificial intelligence 2001 workshop on empirical methods in artificial intelligence. vol 3, pp 41–46

    Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386

    Article  Google Scholar 

  • Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW (1990) The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw 1(4):296–298

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533

    Article  Google Scholar 

  • Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Pascanu R, Hadsell R (2016) Progressive neural networks. Preprint. arXiv:160604671

    Google Scholar 

  • Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–219

    Article  MathSciNet  Google Scholar 

  • Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of the international conference on learning representations (ICLR)

    Google Scholar 

  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  • Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Proceedings of the neural information processing systems. Advances in neural information processing systems. Conference, pp 3104–3112

    Google Scholar 

  • Tieleman T, Hinton G (2017) Divide the gradient by a running average of its recent magnitude. COURSERA: neural networks for machine learning. Technical Report

    Google Scholar 

  • van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: a generative model for raw audio. In: Arxiv. https://arxiv.org/abs/1609.03499

  • Wierstra D, Förster A, Peters J, Schmidhuber J (2010) Recurrent policy gradients. Log J IGPL 18(5):620–634

    Article  MathSciNet  Google Scholar 

  • Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. In: Proceedings of the international conference on machine learning (ICML) workshop

    Google Scholar 

  • Yang G, Yu S, Dong H, Slaubaugh, GG, Dragotti PL, Ye X, Liu F, Arridge SR, Keegan J, Guo Y, Firmin DN (2018) DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 37(6):1310–1321

    Article  Google Scholar 

  • Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, Le QV (2019) XLNet: generalized autoregressive pretraining for language understanding. In: Advances in neural information processing systems, pp 5754–5764

    Google Scholar 

  • Yin W, Kann K, Yu M, Schütze H (2017) Comparative study of CNN and RNN for natural language processing. Preprint. arXiv:170201923

    Google Scholar 

  • Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. In: Advances in neural information processing systems, pp 649–657

    Google Scholar 

  • Zhang J, Lertvittayakumjorn P, Guo Y (2019a) Integrating semantic knowledge to tackle zero-shot text classification. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (long and short papers). Association for Computational Linguistics, Minneapolis, pp 1031–1040. https://doi.org/10.18653/v1/N19-1108

  • Zhang J, Zhao Y, Saleh M, Liu PJ (2019b) PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization. Preprint. arXiv:191208777

    Google Scholar 

  • Zoph B, Le QV (2016) Neural architecture search with reinforcement learning. Preprint. arXiv:161101578

    Google Scholar 

  • Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 8697–8710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Yuan, H., Dong, H. (2020). Introduction to Deep Learning. In: Dong, H., Ding, Z., Zhang, S. (eds) Deep Reinforcement Learning. Springer, Singapore. https://doi.org/10.1007/978-981-15-4095-0_1

Download citation

Publish with us

Policies and ethics