Skip to main content

Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Sustainable Management of Phytoparasitic Nematodes: Current Understandings and Future Challenges

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

Undoubtedly, phytoparasitic nematodes cause great damage to important agricultural crops, which signifies great monetary loss. Nematicides are used to kill the plant parasitic nematodes. These chemicals have caused greater losses to our biodiversity which are untargeted leading to a great perturbation of ecosystem ecology. The impact of these chemicals on human health cannot be ignored. PGPR uses various mechanisms to manage the plant nematodes. They are also known as plant growth enhancer, phytohormone producer, siderophore producer leading to enhanced plant health. They are also helpful in the enhancement of quantum of resistance of the plants against various pathogens including plant parasitic nematodes. Inoculation of suitable rhizobacteria not only enhances the plant growth and yield characters of plants but also restrict the multiplication of pathogens and pest populations. PGPR is one of the best alternatives which could be used against plant nematodes for bringing down their population below threshold level. There are several mechanisms implicated in the management of phytoparasitic nematodes and such mechanisms have been described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON et al (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44

    CAS  Google Scholar 

  • Abdel-Salam MS, Ameen HH, Soliman GM, Elkelany US, Asar AM (2018) Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egypt J Biol Pest Control 28(1):31

    Google Scholar 

  • Abeles, F. B. M. (1992). Ethylene in plant biology, Frederick B. Abeles, Page W. Morgan, Mikal E. Saltveit

    Google Scholar 

  • Agbodjato NA, Noumavo PA, Baba-Moussa F, Salami HA, Sina H, Sèzan A et al (2015) Characterization of potential plant growth promoting rhizobacteria isolated from Maize (Zea mays L.) in central and Northern Benin (West Africa). Appl Environ Soil Sci 2015:1–15

    Google Scholar 

  • Ahmed S, Liu Q, Jian H (2018) Biocontrol potential of Bacillus isolates against cereal cyst nematode (Heterodera avenae). Pak J Nematol 36(2):163–176

    Google Scholar 

  • Alazem M, Lin NS (2017) Antiviral roles of abscisic acid in plants. Front Plant Sci 8:1760

    PubMed  PubMed Central  Google Scholar 

  • Aljaafri WA, Husain ER, Al-Fadhal FA (2019) Examination of Burkholderia renojensis, Streptomcyes avermentilis, and Bacillus firmus to management of Meloidogyne incognita on corn. J Pharm Sci Res 11(3):942–947

    CAS  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20(1):57–61

    PubMed  Google Scholar 

  • Amaki Y, Tanaka K, Tanaka M, Takahashi A (2019) U.S. Patent Application No. 10/219,517

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: Microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: Organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: Augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic Soil Amendments: Potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35

    Google Scholar 

  • Antoun H (2013) Plant-growth-promoting rhizobacteria. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Academic Press, San Diego, CA, pp 353–355. https://doi.org/10.1016/B978-0-12-374984-0.01169-4

    Chapter  Google Scholar 

  • Anwar-ul-Haq M, Anwar SA, Shahid M, Javed N, Khan SA, Mehamood K (2011) Management of root knot nematode Meloidogyne incognita by plant-growth promoting Rhizobacteria on tomato. Pak J Zool 43(6):1027–1031

    Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):66

    Google Scholar 

  • Bharucha U, Patel K, Trivedi UB (2013) Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res 2(3):215–221

    CAS  Google Scholar 

  • Bhat MY, Wani AH, Fazal M (2012) Effect of Paecilomyces lilacinus and plant growth promoting rhizobacteria on Meloidogyne incognita inoculated black gram, Vigna mungo plants. J Biopest 5(1):36

    Google Scholar 

  • Bindu P, Nagendra PG (2016) Siderophore production by Pseudomonas aeruginosa isolated from the paddy fields of Kuttanad, Kerala. Int J Sci Res 5:1577–1581

    Google Scholar 

  • Brilli F, Pollastri S, Raio A, Baraldi R, Neri L, Bartolini P et al (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J Plant Physiol 232:82–93

    CAS  PubMed  Google Scholar 

  • Cao H, Jiao Y, Yin N, Li Y, Ling J, Mao Z et al (2019) Analysis of the activity and biological control efficacy of the Bacillus subtilis strain Bs-1 against Meloidogyne incognita. Crop Prot 122:125

    CAS  Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32(1):70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS et al (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23(4):601–611

    CAS  PubMed  Google Scholar 

  • Das NP, Kumar A, Singh PK (2015) Cyanobacteria, pesticides and rice interaction. Biodivers Conserv 24(4):995–1005

    Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol 42(1):55–76

    CAS  Google Scholar 

  • Dekas AE, Poretsky RS, Orphan VJ (2009) Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326(5951):422–426

    CAS  PubMed  Google Scholar 

  • Delfim J, Schoebitz M, Paulino L, Hirzel J, Zagal E (2018) Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability 10(1):144

    Google Scholar 

  • d’Errico G, Marra R, Crescenzi A, Davino SW, Fanigliulo A, Woo SL, Lorito M (2019) Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two synthetic nematicides in two consecutive crop cycles in greenhouse. Crop Prot 122:159

    Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd-Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    PubMed  PubMed Central  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24(7):1187–1193

    CAS  Google Scholar 

  • Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40(5):736–746

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Penrose biochemical and genetic mechanism used by plant growth promoting bacteria. Imperial College Press, London, UK

    Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  • Heydari S, Rezvani-Moghadam P, Arab M (2008) Hydrogen cyanide production ability by Pseudomonas fluorescence bacteria and their inhibition potential on weed germination. Paper presented at Competition for Resources in a changing world: New drive for rural development, Tropentag, Hohenheim. http://www.tropentag.de/2008/abstracts/full/676.pdf. Accessed 26 Aug 2015

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  PubMed  Google Scholar 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126(3):417–422

    CAS  Google Scholar 

  • Ibrahim M, Agarwal M, Yang JO, Abdulhussein M, Du X, Hardy G, Ren Y (2019) Plant growth regulators improve the production of volatile organic compounds in two rose varieties. Plan Theory 8(2):35

    CAS  Google Scholar 

  • Ijaz M, Tahir M, Shahid M, Ul-Allah S, Sattar A, Sher A et al (2019) Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Braz J Microbiol 50:1–10

    Google Scholar 

  • Inagaki AM, Guimarães VF, do Carmo Lana M, Klein J, Peres Rodrigues da Costa AC, Ormond Sobreira Rodrigues LF, Rampim L (2015) Maize initial growth with the inoculation of plant growth-promoting bacteria (PGPB) under different soil acidity levels. Aust J Crop Sci 9(4):271–280

    CAS  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aromatic Plants 3(2):71–77

    Google Scholar 

  • Kang BR, Anderson AJ, Kim YC (2018) Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol J 34(1):35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kavitha J, Jonathan EI, Umamaheswari R (2007) Field application of Pseudomonas fluorescens, Bacillus subtilis and Trichoderma viride for the control of Meloidogyne incognita (Kofoid and white) Chitwood on sugarbeet. J Biol Control 21(2):211–215

    Google Scholar 

  • Khalil MS, El-Naby SSA (2018) The integration efficacy of formulated abamectin, Bacillus thuringiensis and Bacillus subtilis for managing Meloidogyne incognita (Kofoid and white) Chitwood on tomatoes. J Biopest 11(2):146–153

    CAS  Google Scholar 

  • Khan MR, Mohidin FA, Khan U, Ahamad F (2016) Native Pseudomonas spp. suppressed the root-knot nematode in in vitro and in vivo, and promoted the nodulation and grain yield in the field grown mungbean. Biol Control 101:159–168

    Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R et al (2019) Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436(1–2):325–345

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71(10):1020–1024

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, Heidelberg, pp 37–59

    Google Scholar 

  • Kumar GP, Kishore N, Amalraj ELD, Ahmed SMH, Rasul A, Desai S (2012a) Evaluation of fluorescent Pseudomonas spp. with single and multiple PGPR traits for plant growth promotion of sorghum in combination with AM fungi. Plant Growth Regul 67(2):133–140

    Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012b) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    CAS  PubMed  Google Scholar 

  • Kumar V, Kumar A, Pandey KD, Roy BK (2015) Isolation and characterization of bacterial endophytes from the roots of Cassia tora L. Ann Microbiol 65(3):1391–1399

    CAS  Google Scholar 

  • Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD (2016) Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech 6(1):60

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh AK, Kaushik MS, Mishra SK, Raj P, Singh PK, Pandey KD (2017a) Interaction of turmeric (Curcuma longa L.) with beneficial microbes: a review. 3 Biotech 7(6):357

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Menon S, Agarwal H, Gopalakrishnan D (2017b) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technol 3(4):434–439

    Google Scholar 

  • Lee YS, Kim KY (2016) Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J Phytopathol 164(1):29–39

    CAS  Google Scholar 

  • Li X, Hu H, Li J, Wang C, Chen S, Yan SZ (2019) Effects of the endophytic bacteria Bacillus cereus BCM2 on tomato root exudates and Meloidogyne incognita infection. Plant Dis 103:1551–1558

    PubMed  Google Scholar 

  • Liu R, Dai M, Wu X, Li M, Liu X (2012) Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza 22(4):289–296

    PubMed  Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Control 99:8–13

    Google Scholar 

  • Lopes E, Ribeiro R, Xavier A, Alves R, Castro M, Martins M, Almeida L, Mizobutsi E, Santos Neto J (2019a) Effect of Bacillus subtilis on Meloidogyne javanica and on tomato growth promotion. J Exp Agric Int 35(1):1–8. https://doi.org/10.9734/jeai/2019/v35i130197

    Article  Google Scholar 

  • Lopes P, Koschorreck K, Nedergaard Pedersen J, Ferapontov A, Lörcher S, Skov Pedersen J et al (2019b) Bacillus Licheniformis CotA Laccase mutant: ElectrocatalyticReduction of O2 from 0.6 V (SHE) at pH 8 and in seawater. ChemElectroChem 6(7):2043–2049

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  PubMed  Google Scholar 

  • Mahdy M, Hallmann J, Sikora RA (2000) Biological control of different species of the root-knot nematode Meloidogyne with the plant health-promoting rhizobacterium Bacillus cereus S18. Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent 65(2b):545–549

    Google Scholar 

  • Mahmood I, Rizvi R, Sumbul A, Ansari RA (2019) Potential role of plant growth promoting Rhizobacteria in alleviation of biotic stress. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 177–188

    Google Scholar 

  • Marques AP, Pires C, Moreira H, Rangel AO, Castro PM (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42(8):1229–1235

    CAS  Google Scholar 

  • Mashela PW, Nthangeni ME (2002) Efficacy of Ricinus communis fruit meal with and without Bacillus species on suppression of Meloidogyne incognita and growth of tomato. J Phytopathol 150(7):399–402

    Google Scholar 

  • McRose DL, Baars O, Morel FM, Kraepiel AM (2017) Siderophore production in Azotobacter vinelandii in response to Fe-, Mo-and V-limitation. Environ Microbiol 19(9):3595–3605

    CAS  PubMed  Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Tech 18(4):377–389

    Google Scholar 

  • Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S et al (2018) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17:119–128

    Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2(3):403–411

    CAS  PubMed  Google Scholar 

  • Moghaddam MR, Mahdikhani Moghaddam E, Baghaee Ravari S, Rouhani H (2014) The first report of Bacillus pumilus influence against Meloidogyne javanica in Iran. J Crop Prot 3(1):105–112

    Google Scholar 

  • Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA (2014) Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152(2):331–344

    CAS  PubMed  Google Scholar 

  • Nikoo FS, Sahebani N, Aminian H, Mokhtarnejad L, Ghaderi R (2014) Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J Plant Prot Res 54(4):383–389

    CAS  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE, Osonubi O (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prot 26(7):1006–1012

    Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26(7):971–977

    Google Scholar 

  • Pankaj K, Bansal RK, Nandal SN (2010) Biocontrol of Meloidogyne graminicola using rhizobacteria on rice seedlings. Nematol Mediterr 38(2):115–119

    Google Scholar 

  • Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230

    Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In: Singh AK, Kumar A, Singh PK (eds) PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, Duxford, UK, pp 129–157

    Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20(1):1–11

    CAS  Google Scholar 

  • Ramyabharathi SA, Meena KS, Rajendran L, Karthikeyan G, Jonathan EI, Raguchander T (2018) Biocontrol of wilt-nematode complex infecting gerbera by Bacillus subtilis under protected cultivation. Egypt J Biol Pest Control 28(1):21

    Google Scholar 

  • Reetha S, Bhuvaneswari G, Thamizhiniyan P, Mycin TR (2014) Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L.). Int J Curr Microbiol App Sci 3(2):568–574

    Google Scholar 

  • Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Prot 115(3):108–113

    Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    PubMed  PubMed Central  Google Scholar 

  • Saikia SK, Tiwari S, Pandey R (2013) Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biol Control 65(2):225–234

    Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374

    CAS  PubMed  Google Scholar 

  • Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73

    CAS  PubMed  Google Scholar 

  • Serfoji P, Rajeshkumar S, Selvaraj T (2010) Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa ruby. By using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus coagulans. J Agric Technol 6(1):37–45

    Google Scholar 

  • Sheirdil R, Hayat R, Zhang XX, Abbasi N, Ali S, Ahmed M et al (2019) Exploring the potential soil bacteria for sustainable wheat (Triticum aestivum L.) production. Sustainability 11:3361

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79(1):41–45

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Singh LP (2005) Effects of fly ash, Pseudomonas striata and Rhizobium on the reproduction of nematode Meloidogyne incognita and on the growth and transpiration of pea. J Environ Biol 26(1):117–122

    PubMed  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23(3):435–441

    CAS  Google Scholar 

  • Singh R, Pandey DK, Kumar A, Singh M (2017a) PGPR isolates from the rhizosphere of vegetable crop Momordica charantia: characterization and application as biofertilizer. Int J Curr Microbiol App Sci 6(3):1789–1802

    CAS  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017b) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(4):255

    PubMed  PubMed Central  Google Scholar 

  • Sohrabi F, Sheikholeslami M, Heydari R, Rezaee S, Sharifi R (2018) Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egypt J Biol Pest Control 28(1):56. https://doi.org/10.1186/s41938-018-0059-7

    Article  Google Scholar 

  • Tian F, Wang Y, Zhu X, Chen L, Duan Y (2014) Effect of Sinorhizobium fredii strain Sneb183 on the biological control of soybean cyst nematode in soybean. J Basic Microbiol 54(11):1258–1263

    PubMed  Google Scholar 

  • Tong-Jian XIAO, Fang CHEN, Chao GAO, Qing-Yun ZHAO, Qi-Rong SHEN, Wei RAN (2013) Bacillus cereus X5 enhanced bio-organic fertilizers effectively control root-knot nematodes (Meloidogyne sp.). Pedosphere 23(2):160–168

    Google Scholar 

  • Turatto MF, Dourado FDS, Zilli JE, Botelho GR (2018) Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Braz J Microbiol 49(1):54–58

    CAS  PubMed  Google Scholar 

  • Ugwuoke KI, Eze SC (2010) The effect of mycorrhiza (Glomus geosporum), rhizobium and Meloidogyne incognita on growth and development of cowpea (Vigna unguiculata L. Walp). Res J Agric Biol Sci 6(6):937–941

    Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51(5):550–556

    CAS  PubMed  Google Scholar 

  • Viljoen JJ, Labuschagne N, Fourie H, Sikora RA (2019) Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Trop Plant Pathol:1–8

    Google Scholar 

  • Waadt R, Hsu PK, Schroeder JI (2015) Abscisic acid and other plant hormones: methods to visualize distribution and signaling. BioEssays 37(12):1338–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    CAS  PubMed  Google Scholar 

  • Wang D, Lv S, Jiang P, Li Y (2017) Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci 8:817

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Hu HJ, Li X, Wang YF, Tang YY, Chen SL, Yan SZ (2018) Effects of varying environmental factors on the biological control of Meloidogyne incognita in tomato by Bacillus cereus strain BCM2. Biocontrol Sci Tech 28(4):359–376

    Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176

    Google Scholar 

  • Xiang N, Lawrence KS, Donald PA (2018) Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: a review. J Phytopathol 166(7–8):449–458

    Google Scholar 

  • Xiong J, Zhou Q, Luo H, Xia L, Li L, Sun M, Yu Z (2015) Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World J Microbiol Biotechnol 31(4):661–667

    CAS  PubMed  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33(12):1733–1743

    CAS  Google Scholar 

  • Zandi P, Basu SK (2016) Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems. In: Nandwani D (ed) Organic farming for sustainable agriculture. Springer, Cham, pp 71–87

    Google Scholar 

  • Zeynadini-Riseh A, Mahdikhani-Moghadam E, Rouhani H, Moradi M, Saberi-Riseh R, Mohammadi A (2018) Effect of some probiotic bacteria as biocontrol agents of Meloidogyne incognita and evaluation of biochemical changes of plant defense enzymes on two cultivars of pistachio. J Agric Sci Technol 20(1):179–191

    Google Scholar 

  • Zhai Y, Shao Z, Cai M, Zheng L, Li G, Huang D et al (2018) Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Front Microbiol 9:253

    PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Shao Z, Cai M, Zheng L, Li G, Yu Z, Zhang J (2019) Cyclo (l-pro–l-Leu) of Pseudomonas putida MCCC 1A00316 isolated from Antarctic soil: identification and characterization of activity against Meloidogyne incognita. Molecules 24(4):768

    PubMed Central  Google Scholar 

  • Zhou C, Li F, Xie Y, Zhu L, Xiao X, Ma Z, Wang J (2017) Involvement of abscisic acid in microbe-induced saline-alkaline resistance in plants. Plant Signal Behav 12(10):1143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansari, R.A., Rizvi, R., Sumbul, A., Mahmood, I. (2020). Plant-Growth-Promoting Rhizobacteria (PGPR)-Based Sustainable Management of Phytoparasitic Nematodes: Current Understandings and Future Challenges. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_3

Download citation

Publish with us

Policies and ethics