Skip to main content

Bioprospecting Compost for Long-Term Control of Plant Parasitic Nematodes

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

Many of the microbial antagonists of plant-parasitic nematodes (PPNs) have been found in compost. As such, compost represents a great potential source for bioprospecting microbes capable of controlling PPNs. This is particularly so since most of the estimated billions of microbes per gram of compost (>50K species/g) have not been discovered and/or are not yet cultivable. Moreover, the composting process allows for some degree of manipulation to continuously produce desired microbial species that are often capable of surviving under challenging environmental conditions, such as high soil temperature. Compost also contains a rich diversity of nematode antagonistic compounds (microbial and non-microbial sources), such as humic acids, phenolics and fatty acids, and have been reported to enhance soil resident microbial antagonists, increase plant tolerance and resistance and alter soil physiology profiles, making it unsuitable for nematode survival and activity. Due to its multiple suppression mechanisms, in this chapter, compost is argued to be a great potential source for research aimed at extracting the maximum commercial value from its genetic and biochemical resources, thus making it a more holistic and sustainable approach for managing nematodes rather than a single-type approach, such as the use of synthetic pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elgawad MMM, Askary TH (2018) Fungal and bacterial nematicides in integrated nematode management strategies. Egypt J Biol Pest Control 28:74. https://doi.org/10.1186/s41938-018-0080-x

    Article  Google Scholar 

  • Akhtar M (1995) Biological control of the root-knot nematode Meloidogyne incognita in tomato by the predatory nematode Mononchus aquaticus. Int Pest Control 37(1):18–19

    Google Scholar 

  • Akhtar M (1998) Biological control of plant-parasitic nematodes by neem products in agricultural soil. Appl Soil Ecol 7(3):219–223. https://doi.org/10.1016/S0929-1393(97)00031-0

    Article  Google Scholar 

  • Akhtar M, Anver AY (1990) Effects of organic amendments to soil as nematode suppressants. Int Nematol Net Newslett 7:21–22

    Google Scholar 

  • Akhtar M, Mahmood I (1993) Effect of Mononchus aquaticus and organic amendments on Meloidogyne incognita development on chili. Nematol Mediterr 21:251–252

    Google Scholar 

  • Akhtar M, Mahmood I (1996) Control of plant-parasitic nematodes with organic and inorganic amendments in agricultural soil. Appl Soil Ecol 4(3):243–247. https://doi.org/10.1016/S0929-1393(96)00114-X

    Article  Google Scholar 

  • Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74(1):35–47. https://doi.org/10.1016/S0960-8524(99)00154-6

    Article  CAS  Google Scholar 

  • Akhtar M, Mashkoor Alam M (1992) Effect of crop residues amendments to soil for the control of plant-parasitic nematodes. Bioresour Technol 41(1):81–83. https://doi.org/10.1016/0960-8524(92)90102-4

    Article  Google Scholar 

  • Akthar M, Alam M (1991) Integrated control of plant-parasitic nematodes on potato with organic amendments, nematicide and mixed cropping with mustard. Nematol Mediterr 19:169–171

    Google Scholar 

  • Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1,3-glucanase production. Can J Microbiol 54(7):577–587. https://doi.org/10.1139/w08-043

    Article  CAS  PubMed  Google Scholar 

  • Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e-J Sci Technol 5:65–67

    Google Scholar 

  • Ansari RA, Khan TA (2012b) Diversity and community structure of phytonematodes associated with guava in and around Aligarh, Uttar Pradesh, India. Trends Biosci 5(3):202–204

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: Microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: Organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: Augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic Soil Amendments: Potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35

    Google Scholar 

  • Ara J, Ehteshamul-Haque S, Sultana V, Ghaffar A, Qasim R (1997) Use of Sargassum species for the control of Meloidogyne javanica in okra. Nematol Medit 25(1):125–128

    Google Scholar 

  • Arancon NQ, Galvis P, Edwards C, Yardim E (2003) The trophic diversity of nematode communities in soils treated with vermicompost: the 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia 47(5):736–740. https://doi.org/10.1078/0031-4056-00752

    Article  Google Scholar 

  • Beaulieu F, Walter DE (2007) Predation in suspended and forest floor soils: observations on Australian mesostigmatic mites. Acarologia 47(1–2):43–54

    Google Scholar 

  • Bhatia C, Mukherjee PK (2018) Chapter 12—Microbial technologies for sustainable crop production. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, the Netherlands, pp 255–261; ISBN: 9780444639875. https://doi.org/10.1016/B978-0-444-63987-5.00012-8

    Chapter  Google Scholar 

  • Bilgrami AL, Brey C (2005) Potential of predatory nematodes to control plant parasitic nematodes. In: Grewal P, Ehlers R, Shapiro-llan D (eds) Nematodes as biocontrol agents. CABI International, Wallingford, pp 447–464. https://doi.org/10.1079/9780851990170.0447

    Chapter  Google Scholar 

  • Bordallo JJ, Lopez-Llorca LV, Jansson H-B, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154(2):491–499. https://doi.org/10.1046/j.1469-8137.2002.00399.x

    Article  Google Scholar 

  • Bridge J (2002) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34(1):201–225. https://doi.org/10.1146/annurev.phyto.34.1.201

    Article  Google Scholar 

  • Bulluck LR, Barker KR, Ristaino JB (2002) Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Appl Soil Ecol 21(3):233–250. https://doi.org/10.1016/S0929-1393(02)00089-6

    Article  Google Scholar 

  • Cavagnaro TR (2015) Biologically regulated nutrient supply systems. Adv Agron 129:293–321. https://doi.org/10.1016/bs.agron.2014.09.005

    Article  Google Scholar 

  • Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population: original article. Soil Sci Plant Nutr 53(2):132–140. https://doi.org/10.1111/j.1747-0765.2007.00122.x

    Article  CAS  Google Scholar 

  • Chen ZX, Dickson DW, McSorley R, Mitchel DJ, Hewlett TE (1996) Suppression of Meloidogyne arenaria race 1 by soil application of endospores of Pasteuria penetrans. J Nematol 28(2):159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32(1):70–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikaoka I, Onbayash NP, Suina S (1982) The effect of green manure, marigold, groundnut, sorghum and watermelon on the population dynamics of Pratylenchus penetrans and Meloidogyne incognita. Jap J Nematol 11:19–23

    Google Scholar 

  • Cobb NA (1917) The Mononchus: a genus of free living predatory nematodes. Soil Sci 3:431–486

    Google Scholar 

  • Crouch IJ, Van Staden J (1993) Effect of seaweed concentrate from Ecklonia maxima (Osbeck) Papenfuss on Meloidogyne incognita infestation on tomato. J Appl Phycol. https://doi.org/10.1007/BF02182420

  • Cumagun CJR, Moosavi MR (2015) Significance of biocontrol agents of phytonematodes. In: Askary T, Martinelli P (eds) Biocontrol agents of phytonematodes. CABI International, Boston, MA, pp 50–78. https://doi.org/10.1079/9781780643755.0050

    Chapter  Google Scholar 

  • Daami-remadi M, Dkhili I, Jabnoun-Khiareddine H, El Mahjoub M (2012) Biological control of potato leak with antagonistic fungi isolated from compost teas and solarized and non-solarized soils. Pest Technol 6:32–40

    Google Scholar 

  • Degenkolb T, Vilcinskas A (2016a) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100(9):3799–3812. https://doi.org/10.1007/s00253-015-7233-6

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Vilcinskas A (2016b) Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl Microbiol Biotechnol 100(9):3813–3824. https://doi.org/10.1007/s00253-015-7234-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi G (2018) Utilization of nematode destroying fungi for management of plant-parasitic nematodes-a review. Biosci Biotechnol Res Asia 15:377–396. https://doi.org/10.13005/bbra/2642

    Article  Google Scholar 

  • Dickson DW, Hewlett TE (1989) Effects of bahiagrass and nematicides on Meloidogyne arenaria on peanut. J Nematol 21(4S):671–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duponnois R, Mateille T, Sene V, Sawadogo A, Fargette M (1996) Effect of different west African species and strains of Arthrobotrys nematophagous fungi on Meloidogyne species. Entomophaga 41(3/4):474–483

    Google Scholar 

  • Dutta TK, Khan MR, Phani V (2019) Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: current status and future prospects. Curr Plant Biol 17:17–32. https://doi.org/10.1016/j.cpb.2019.02.001

  • El Khaldi R, Daami-remadi M, Hamada W et al (2015) Plant pathology & microbiology the potential of Serratia marcescens: an indigenous strain isolated from date palm compost as biocontrol agent of Rhizoctonia solani on potato. https://doi.org/10.4172/2157-7471.S3-006

  • El-Nagdi WMA, Youssef MMA (2019) Brassica vegetable leaf residues as promising biofumigants for the control of root knot nematode, Meloidogyne incognita infecting cowpea. Agric Eng Int CIGR J 21(1):134–139

    Google Scholar 

  • Featonby-Smith BC, Van Staden J (1983) The effect of seaweed concentrate on the growth of tomato plants in nematode-infested soil. Sci Hortic (Amsterdam). https://doi.org/10.1016/0304-4238(83)90134-6

  • Grubišić D, Uroić G, Ivošević A, Grdiša M (2018) Nematode control by the use of antagonistic plants. Agriculturae Conspectus Scientificus 83(4):269–275

    Google Scholar 

  • Guo X-x, Liu H-t, Wu S-b (2019) Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions. Sci Total Environ 662:501–510. https://doi.org/10.1016/j.scitotenv.2019.01.137

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Hallmann J, Davies KG, Sikora R (eds) Root-knot nematodes. CABI, Wallingford, pp 380–411. https://doi.org/10.1079/9781845934927.0380

    Chapter  Google Scholar 

  • Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108(3):756–770. https://doi.org/10.1111/j.1365-2672.2009.04471.x

    Article  CAS  PubMed  Google Scholar 

  • Heringa SD, Kim J, Jiang X, Doyle MP, Erickson MC (2010) Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compost. Appl Environ Microbiol 76(15):5327–5332. https://doi.org/10.1128/AEM.00075-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoitink HA (1990) United States Patent [19]. 286–287

    Google Scholar 

  • Hoitink HAJ, Fahy PC (1986) Basis for the control of Soilborne plant pathogens with composts. Annu Rev Phytopathol 24:93–114

    Google Scholar 

  • Jung WJ, Jung SJ, An KN, Jin YL, Park RD, Kim KY et al (2002) Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechnol 12(6):865–871

    CAS  Google Scholar 

  • Khan A, Williams K, Nevalainen H (2004) Effects of protease and chitinase on the eggshell structures and hatching of juveniles. Biol Control 31:346–352. https://doi.org/10.1016/j.biocontrol.2004.07.011

    Article  CAS  Google Scholar 

  • Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH (2008) A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol 99(8):3016–3023. https://doi.org/10.1016/j.biortech.2007.06.031

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Abid M, Hussain F (2015) Nematicidal activity of seaweeds against Meloidogyne javanica Pakistan. J Nematol 33(2):195–203

    Google Scholar 

  • Khan A, Asif M, Tariq M, Rehman B, Parihar K, Siddiqui MA (2017) Phytochemical investigation, nematostatic and nematicidal potential of weeds extract against the root-knot nematode, Meloidogyne incognita in vitro. Asian J Biol Sci 10:38–46

    CAS  Google Scholar 

  • Kiontke K, David HA (2013) Current biology primer fitch nematodes. 23(19):PR862–R864. https://doi.org/10.1016/j.cub.2013.08.009

  • Koning G, Hamman B, Eicker A (1996) The efficacy of nematophagous fungi on predaceous nematodes in soil compared with saprophagous nematodes in mushroom compost. South Afr J Bot 62(1):49–53. https://doi.org/10.1016/S0254-6299(15)30578-0

    Article  Google Scholar 

  • Kouki S, Saidi N, RA Ben et al (2012) Control of Fusarium wilt of Tomato Caused by Fusarium oxysporum F. Sp. Radicis-Lycopersici using mixture of vegetable and Posidonia oceanica compost. 2012. https://doi.org/10.1155/2012/239639

  • Kumar N, Singh RK, Singh KP (2011) Occurrence and colonization of nematophagous fungi in different substrates, agricultural soils and root galls. Arch Phytopathol Plant Prot 44(12):1182–1195. https://doi.org/10.1080/03235408.2010.484945

    Article  Google Scholar 

  • Kwok O, Fahy P, Hoitink H, Kuter G (1987) Interactions between bacteria and Trichoderma hamatum in suppression of Rhizoctonia damping-off in bark compost media. Phytopathology 77:1206. https://doi.org/10.1094/Phyto-77-1206

    Article  Google Scholar 

  • Labidi S, Nasr H, Zouaghi M, Wallander H (2007) Effects of compost addition on extra-radical growth of arbuscular mycorrhizal fungi in Acacia tortilis ssp. raddiana savanna in a pre-Saharan area. Appl Soil Ecol 35(1):184–192. https://doi.org/10.1016/j.apsoil.2006.04.009

    Article  Google Scholar 

  • Lee YS, Park YS, Anees M, Kim YC, Kim YH, Kim KY (2013) Nematicidal activity of Lysobacter capsici YS1215 and the role of gelatinolytic proteins against root-knot nematodes. Biocontrol Sci Technol 23(12):1427–1441. https://doi.org/10.1080/09583157.2013.840359

    Article  Google Scholar 

  • Liang LM, Zou CG, Xu J, Zhang KQ (2019) Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos Trans R Soc Lond Ser B Biol Sci 374(1767):20180317. https://doi.org/10.1098/rstb.2018.0317

    Article  CAS  Google Scholar 

  • Lim TK, Lim TK (2014) Azadirachta indica. Edible medicinal and non medicinal plants, A. Juss. C. Springer, Dordrecht, pp 409–455. https://doi.org/10.1007/978-94-017-8748-2_30

    Book  Google Scholar 

  • Linford MB, Oliveira JM (1938) Potential agents of biological control of plant-parasitic nematodes (Abstract). Phytopathology 28:14

    Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production-a review. Crit Rev Plant Sci 23:453–479

    Google Scholar 

  • Lopes EA, Dallemole-Giaretta R, dos Santos Neves W, Parreira DF, Ferreira PA (2019) Eco-friendly approaches to the management of plant-parasitic nematodes. In: Ansari R, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_9

    Chapter  Google Scholar 

  • Lopez-Llorca LV, Gómez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F et al (2010) Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genet Biol 47(4):342–351. https://doi.org/10.1016/j.fgb.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Abdullah SK, Descals E, Salinas J, Lopez-Llorca LV (2008) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64(1):90–105. https://doi.org/10.1111/j.1574-6941.2007.00443.x

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Shukla S, Aeron A, Kumar T, Jha CK, Patel D et al (2013) Rhizobacteria for management of nematode disease in plants. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Heidelberg, pp 379–404. https://doi.org/10.1007/978-3-642-33639-3_14

    Chapter  Google Scholar 

  • Malandraki I, Tjamos SE, Pantelides IS, Paplomatas EJ (2008) Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol Control 44:180–187. https://doi.org/10.1016/j.biocontrol.2007.10.006

    Article  Google Scholar 

  • Marull J, Pinochet J, Rodríguez-Kábana R (1997) Agricultural and municipal compost residues for control of root-knot nematodes in tomato and pepper. Compost Sci Util 5(1):6–15. https://doi.org/10.1080/1065657X.1997.10701860

    Article  Google Scholar 

  • McSorley R, Frederick JJ (1995) Responses of some common cruciferae to root-knot nematodes. J Nematol 27(4S):550–554. http://www.ncbi.nlm.nih.gov/pubmed/19277321%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2619653

  • Mojtahedi H (2010) Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Dis 77(1):42. https://doi.org/10.1094/pd-77-0042

    Article  Google Scholar 

  • Moosavi MR, Zare R (2012) Fungi as biological control agents of plant-parasitic nematodes. In: Mérillon JM, Ramawat KG (eds) Plant defence: biological control. Springer, Heidelberg, pp 67–107. https://doi.org/10.1007/978-94-007-1933-0_4

    Chapter  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):e79512. https://doi.org/10.1371/journal.pone.0079512

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngala BM, Valdes Y, dos Santos G, Perry RN, Wesemael WML (2016) Seaweed-based products from Ecklonia maxima and Ascophyllum nodosum as control agents for the root-knot nematodes Meloidogyne chitwoodi and Meloidogyne hapla on tomato plants. J Appl Phycol 28(3):2073–2082. https://doi.org/10.1007/s10811-015-0684-4

    Article  CAS  Google Scholar 

  • Niu Q, Huang X, Zhang L, Li Y, Li J, Yang J, Zhang K (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185(6):439–448. https://doi.org/10.1007/s00203-006-0112-x

    Article  CAS  PubMed  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol 44(2):101–115. https://doi.org/10.1016/j.apsoil.2009.11.003

    Article  Google Scholar 

  • Oka Y, Koltai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y (2000) New strategies for the control of plant-parasitic nematodes. Pest Manag Sci 56:983–988. https://doi.org/10.1002/1526-4

    Article  CAS  Google Scholar 

  • Olabiyi TI, Oladeji OO (2014) Assessment of four compost types on the nematode population dynamics in the soil sown with okra. Int J Org Agric Res Dev 9(9):146–155. http://orgprints.org/28203

    Google Scholar 

  • Oostendorp M, Dickson DW, Mitchell DJ (1990) Host range and ecology of isolates of Pasteuria spp. from the Southeastern United States. J Nematol 22(4):525–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pakyari H, Maghsoudlo M (2011) Development and life table of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushroom and Phytonematode. Acad J Entomol 4:59–63

    Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49(1):291–315. https://doi.org/10.1146/annurev-phyto-080508-081831

    Article  CAS  PubMed  Google Scholar 

  • Renčo M, Sasanelli N, Maistrello L (2014) Plants as natural sources of nematicides. In: Davis LM (ed) Nematodes: comparative genomics, disease management and ecological importance, 1st edn. NOVA Science Publisher, New York, pp 115–141

    Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Berlin, Heidelberg, pp 1–13. https://doi.org/10.1007/3–540-33526-9_1

    Google Scholar 

  • Shamalie BVT, Fonseka RM, Rajapaksha RGAS (2012) Effect of trichoderma viride and carbofuran (Curator®) on management of root knot nematodes and growth parameters of gotukola (Centella asiatica L.). Trop Agric Research 23:61–69. https://doi.org/10.4038/tar.v23i1.4632

    Article  Google Scholar 

  • Sharma RD (1992) Biocontrol efficiency of Pasteuria penetrans against Meloidogyne javanica. Ciencia Bio Ecol E Syst 12:43–47

    Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode MeloidogUSyne javanica by Trichoderma harzianum. Phytopathology 91(7):687–693

    CAS  PubMed  Google Scholar 

  • Siddiqui MA, Alam MM (1988) Control of plant-parasitic nematodes with Tagetes tenuifolia. Rev Nematol 11:369–370

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69(2):167–179. https://doi.org/10.1016/S0960-8524(98)00122-9

    Article  CAS  Google Scholar 

  • Siddiqui IA, Qureshi SA, Sultana V, Ehteshamul-Haque S, Ghaffar A (2000) Biological control of root rot-root knot disease complex of tomato. Plant and Soil 227(1–2):163–169. https://doi.org/10.1023/A:1026599532684

    Article  CAS  Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46(1):15–23. https://doi.org/10.1016/j.biocontrol.2008.02.011

    Article  Google Scholar 

  • Stirling GR (2011) Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for further research. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes. Springer, Cham, Switzerland, pp 1–38. https://doi.org/10.1007/978-1-4020-9648-8_1

    Chapter  Google Scholar 

  • Stirling GR (2018) Chapter 5 Biological control of plant-parasitic nematodes. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes, vol 11. CRC Press, Boca Raton, FL, p 160

    Google Scholar 

  • Stirling GR, Wong E, Bhuiyan S (2017) Pasteuria, a bacterial parasite of plant-parasitic nematodes: its occurrence in Australian sugarcane soils and its role as a biological control agent in naturally-infested soil. Austr Plant Pathol 46:563–569. https://doi.org/10.1007/s13313-017-0522-z

    Article  CAS  Google Scholar 

  • St. Martin CCG (2015) Enhancing soil suppressiveness using compost and compost tea. In: Meghvansi M, Varma A (eds) Organic amendments and soil suppressiveness in plant disease management. Soil biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_2

    Chapter  Google Scholar 

  • St. Martin CCG, Ramsubhag A (2015) Potential of compost for suppressing plant diseases. In: Ganesan S, Kurucheve Vadivel JJ (eds) Sustainable crop disease management using natural products. CABI, Boston, MA, pp 345–388

    Google Scholar 

  • Sultana V, Baloch GN, Ara J, et al (2011) Seaweeds as an alternative to chemical pesticides for the management of root diseases of sunflower and tomato. Journal of Applied Botany and Food Quality 84 :162–168

    Google Scholar 

  • Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18–5 and chi18–12 genes in nematode egg-parasitism. Biol Control 63(2):121–128. https://doi.org/10.1016/j.biocontrol.2012.06.013

    Article  Google Scholar 

  • Szafranek P, Lewandowski M, Kozak M (2013) Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Exp Appl Acarol 61(1):53–67. https://doi.org/10.1007/s10493-013-9701-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang JP, Zhang Z, Jing X, Yu Z, Zhang J, Shao Z et al (2014) Mechanism of antagonistic bacteria Pseudomonas putida 1A00316 from the South Pole soil against Meloidogyne incognita. Chin J App Environ Biol 20:1046–1051. https://doi.org/10.3724/SP.J.1145.2014.05009

    Article  CAS  Google Scholar 

  • Tanwar A, Aggarwal A, Yadav A, Parkash V (2013) Screening and selection of efficient host and sugarcane bagasse as substrate for mass multiplication of Funneliformis mosseae. Biol Agric Hortic 29(2):107–117. https://doi.org/10.1080/01448765.2013.771955

    Article  Google Scholar 

  • Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61(2):197–213. https://doi.org/10.1111/j.1574-6941.2007.00349.x

    Article  CAS  PubMed  Google Scholar 

  • Trivedi PC, Malhotra A (2013) Bacteria in the management of plant-parasitic nematodes. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Heidelberg, pp 349–377. https://doi.org/10.1007/978-3-642-33639-3_13

    Chapter  Google Scholar 

  • Usman A, Siddiqui MA (2013) Integrated approaches of phytonematodes management by organic soil amendments and ploughing. Pak J Nematol 31:157–163

    Google Scholar 

  • Valarini PJ, Curaqueo G, Seguel A, Manzano K, Rubio R, Cornejo P, Borie F (2009) Effect of compost application on some properties of a volcanic soil from central South Chile. Chilean J Agric Res 69(3):416–425. https://doi.org/10.4067/S0718-58392009000300015

    Article  Google Scholar 

  • Van de Bund CF (1972) Some observations on predatory action of mites on nematodes. Zasz Probl Postepow Nauk Roln 129:103–110

    Google Scholar 

  • Veresoglou SD, Rillig MC (2011) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    PubMed  PubMed Central  Google Scholar 

  • Walter DE, Proctor HC (2013) Mites: ecology, evolution & behaviour: life at a microscale, 2nd edn. Springer, Cham, Switzerland. https://doi.org/10.1007/978-94-007-7164-2

    Book  Google Scholar 

  • Walter DE, Hunt HW, Elliott ET (1987) The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia 30:419–424

    Google Scholar 

  • Wang X, Li GH, Zou CG, Ji X, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y et al (2014) Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 5:5776. https://doi.org/10.1038/ncomms6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner M, Blok V, Daudi A, Bala G, Davies K, Netscher C, Sawadogo A et al (2000) The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology 2(8):823–845

    Google Scholar 

  • Wislocki PG, Grosso LS, Dybas RA. (1989) Environmental Aspects of Abamectin Use in Crop Protection. In: Campbell W.C. (eds) Ivermectin and Abamectin. Springer, New York, pp 182–200

    Google Scholar 

  • Yang J, Kharbanda PD, Mirza M (2004) Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of pythium disease of cucumber in a hydroponic system. Acta Hortic 635:59–66. https://doi.org/10.17660/ActaHortic.2004.635.7

    Article  Google Scholar 

  • Yang H-C, Im W-T, Kang MS, Shin D-Y, Lee S-T (2006) Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84. https://doi.org/10.1099/ijs.0.63826-0

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Gu S, Xin Y, Bello A, Sun W, Xu X (2018) Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front Microbiol 9:169. https://doi.org/10.3389/fmicb.2018.00169

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates GW, Wardle DA (1996) Nematodes as predators and prey: relationships to biological control and soil processes. Pedobiologia 40(1):43–50

    Google Scholar 

  • Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY (2012) Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology 14(2):175–184. https://doi.org/10.1163/138855411X584124

    Article  CAS  Google Scholar 

  • Zakaria HM, Kassab AS, Shamseldean MM, Oraby MM, El-Mourshedy MMF (2013) Controlling the root-knot nematode, Meloidogyne incognita in cucumber plants using some soil bioagents and some amendments under simulated field conditions. Ann Agric Sci 58(1):77–82. https://doi.org/10.1016/j.aoas.2013.01.011

    Article  Google Scholar 

  • Zhai Y, Shao Z, Cai M, Zheng L, Li G, Huang D et al (2018) Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita. Front Microbiol 9:253. https://doi.org/10.3389/fmicb.2018.00253

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, Luo C, Wei L (2019) Rhizosphere microbiomes from root knot nematode non-infected plants suppress nematode infection. Microb Ecol 78:470–481. https://doi.org/10.1007/s00248-019-01319-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaney C. G. St. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rouse-Miller, J., Bartholomew, E.S., St. Martin, C.C.G., Vilpigue, P. (2020). Bioprospecting Compost for Long-Term Control of Plant Parasitic Nematodes. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_2

Download citation

Publish with us

Policies and ethics