Skip to main content

Efficacy of Microbial Biocontrol Agents in Integration with Other Managing Methods against Phytoparasitic Nematodes

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

Biological control can be a safe alternative to detrimental chemical nematicides if its persistence and performance increase to a satisfactory level. But at present, no biocontrol agent (BCA) can provide adequate nematode control when applied alone. One approach to improve their controlling importance is to use them in integration with one or more compatible practices that enhance BCAs’ population, diversity, durability and efficacy. This goal may be achieved by combined use of BCAs with measures aiming at manipulating the soil environment in favour of BCAs, reducing nematode population and enhancing BCAs’ activity. Here a brief outline of some measures for controlling phytonematode is illustrated with extra attention to those that can be applied combinedly with biological control. Their advantages and disadvantages as well as their effects on altering biocontrol activity are demonstrated along with selected examples of each tactic. The reviewed strategies in combination with biocontrol are using host plant resistance (tolerance, resistance and induced resistance); agronomic practices (rotation, trap crops, antagonistic crops, cover crops, fallow, flooding, organic amendments and tillage); decrease in phytonematode populations (soil solarisation, biofumigation and chemical nematicides); and application more than one BCA. Finally, the future paths of integrated nematode management are designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrios GN (ed) (2005) Plant pathology, 5th edn. Academic Press, New York

    Google Scholar 

  • Alesadi GA, Moosavi MR, Basirnia T (2017) Effect of nano-K, potassium sulphate and salicylic acid on tomato growth and control of root-knot nematode (Meloidogyne javanica). J Plant Prot 40(3):71–82; in Persian with English abstract

    Google Scholar 

  • Amer-Zareen ZMJ, Abid M, Gowen SR, Kerry BR (2004) Management of root knot nematode (Meloidogyne javanica) by biocontrol agents in two crop rotations. Int J Biol Biotechnol 1(1):67–73

    Google Scholar 

  • Amir-Ahmadi N, Moosavi MR, Moaf-Poorian GR (2017) Investigating the effect of soil texture and its organic content on the efficacy of Trichoderma harzianum in controlling Meloidogyne javanica and stimulating the growth of kidney bean. Biocontrol Sci Tech 27(1):115–127

    Google Scholar 

  • Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA, Gowen SR (2008) The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Prot 27:352–361

    Google Scholar 

  • Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e-J Sci Technol 5:65–67

    Google Scholar 

  • Ansari RA, Khan TA (2012b) Diversity and community structure of phytonematodes associated with guava in and around Aligarh, Uttar Pradesh, India. Trends Biosci 5(3):202–204

    Google Scholar 

  • Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9

    CAS  Google Scholar 

  • Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243

    Google Scholar 

  • Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4

    Book  Google Scholar 

  • Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: organic strategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5

    Book  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472

    Google Scholar 

  • Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312

    Google Scholar 

  • Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35

    Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Protect 43(6):609–614

    Google Scholar 

  • Atkins SD, Hidalgo-Diaz L, Kalisz H, Mauchline TH, Hirsch PR, Kerry BR (2003) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Manag Sci 59:183–189

    CAS  PubMed  Google Scholar 

  • Baker KF (1981) Biological control. In: Mace E, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, London, pp 523–561

    Google Scholar 

  • Bakker E, Dees R, Bakker J, Goverse A (2006) Mechanisms involved in plant resistance to nematodes. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer Science + Business Media, New York, pp 314–334

    Google Scholar 

  • Bao Y, Neher DA, Chen SY (2011) Effect of soil disturbance and biocides on nematode communities and extracellular enzyme activity in soybean cyst nematode suppressive soil. Nematology 13:687–699

    CAS  Google Scholar 

  • Barker KR (1991) Rotation and cropping systems for nematode control: the North Carolina experience-introduction. J Nematol 23(3):342–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard EC, Self LH, Tyler DD (1996) Fungal parasitism of soybean cyst nematode, Heterodera glycines (Nemata: Heteroderidae), in differing cropping-tillage regimes. Appl Soil Ecol 5:57–70

    Google Scholar 

  • Brahma U, Borah A (2016) Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J Nematol 46:58–61

    Google Scholar 

  • Brown SM, Nordmeyer D (1985) Synergistic reduction in root galling by Meloidogyne javanica with Pasteuria penetrans and nematicide. Rev Nematol 8:285–286

    Google Scholar 

  • Bruinsma J (ed) (2003) World agriculture: towards 2015/2030: an FAO perspective. Earthscan Publications, London

    Google Scholar 

  • Castagnone-Sereno P (2002) Genetic variability in parthenogenesis root-knot nematodes, Meloidogynes pp., and their ability to overcome plant resistance genes. Nematology 4:605–608

    Google Scholar 

  • Chen ZX, Dickson DM (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30:313–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Liu S (2007) Effects of tillage and crop sequence on parasitism of Heterodera glycines juveniles by Hirsutella spp. and on juvenile population density. Nematropica 37:93–106

    Google Scholar 

  • Chen SY, Reese CD (1999) Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J Nematol 31:437–444

    Google Scholar 

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32:70–77

    Google Scholar 

  • Ciancio A, Pieterse CMJ, Mercado-Blanco J (2016) Editorial: harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol 7:1620

    PubMed  PubMed Central  Google Scholar 

  • Conrath U (2011) Molecular aspects of defense priming. Trends Plant Sci 16:524–531

    CAS  PubMed  Google Scholar 

  • Cook R, Starr JL (2006) Resistant cultivars. In: Perry RN, Moens M (eds) Plant nematology. CABI Publishing, Wallingford, UK, pp 370–389

    Google Scholar 

  • Cottage A, Urwin P (2013) Genetic engineering for resistance. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 437–458

    Google Scholar 

  • Crump DH (1989) Interaction of cyst nematodes with their natural antagonists. Asp Appl Biol 22:135–140

    Google Scholar 

  • Crump DH (1991) Biological control of the beet cyst nematode. Br Sugar Beet Rev 59:54–55

    Google Scholar 

  • Crump DH (1998) Biological control of potato and beet cyst nematodes. Asp Appl Biol 53:383–386

    Google Scholar 

  • Culbreath AK, Rodriguez-Kabana R, Morgan-Jones G (1986) Chitin and Paecilomyces lilacinus for control of Meloidogyne arenaria. Nematropica 16:153–166

    Google Scholar 

  • Cumagun CJR, Moosavi MR (2015) Significance of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 50–78

    Google Scholar 

  • Dallemole-Giaretta R, de Freitas LG, Lopes EA, Ferraz S, de Podesta GS, Agnes EL (2011) Cover crops and Pochonia chlamydosporia for the control of Meloidogyne javanica. Nematology 13:919–926

    Google Scholar 

  • Dalmasso A, Castagnone-Sereno P, Abad P (1992) Seminar: tolerance and resistance of plants to nematodes-knowledge, needs and prospects. Nematologica 38:466–472

    Google Scholar 

  • Dandurand L-M, Knudsen GR (2016) Effect of the trap crop Solanum sisymbriifolium and two biocontrol fungi on reproduction of the potato cyst nematode, Globodera pallida. Ann Appl Biol 169(2):180–189

    Google Scholar 

  • Davies LJ, Elling AA (2015) Resistance genes against plant-parasitic nematodes: a durable control strategy? Nematology 17:249–263

    CAS  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    PubMed  PubMed Central  Google Scholar 

  • Devi TS, Mahanta B, Borah A (2016) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on brinjal. Indian J Nematol 46:161–164

    Google Scholar 

  • Devine KJ, Dunne C, O’Gara F, Jones PW (1999) The influence of in-egg mortality and spontaneous hatching on the decline of Globodera rostochiensis during crop rotation in the absence of the host potato crop in the field. Nematology 1:637–645

    Google Scholar 

  • Dhawan SC, Singh S (2009) Compatibility of Pochonia chlamydosporia with nematicide and neem cake against root-knot nematode, Meloidogyne incognita infesting okra. Indian J Nematol 39:85–89

    Google Scholar 

  • Duponnois R, Netscher C, Mateille T (1997) Effect of the rhizosphere microflora on Pasteuria penetrans parasitizing Meloidogyne graminicola. Nematol Mediterr 25:99–103

    Google Scholar 

  • Duponnois R, Ba AM, Mateille T (1998) Effects of some rhizosphere bacteria for the biocontrol of nematodes of the genus Meloidogyne with Arthrobotrys oligospora. Fundam Appl Nematol 21:157–163

    Google Scholar 

  • DuPont ST, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167

    Google Scholar 

  • Ebone LA, Kovaleski M, Deuner CC (2019) Nematicides: history, mode, and mechanism action. Plant Sci Today 6(2):91–97

    CAS  Google Scholar 

  • Esnard J, Marban-Mendoza N, Zuckerman BM (1998) Effects of three microbial broth cultures and an organic amendment on growth and populations of free-living and plant-parasitic nematodes on banana. Eur J Plant Pathol 104:457–463

    Google Scholar 

  • FAO (Agriculture Organization of the United Nations), IFAD (International Fund for Agricultural Development) & WFP (World Food Programme) (2013) The state of food insecurity in the world 2013, the multiple dimensions of food security. FAO, Rome, Italy

    Google Scholar 

  • Fatemy S, Moosavi MR (2019) Nematotoxic potential of daikon, chinaberry and purslane herbal green manures against Globodera rostochiensis in vitro and microplot. J Crop Prot 8(1):69–80

    Google Scholar 

  • Fortnum BA, Karlen DL (1985) Effects of tillage systems and irrigation on population densities of plant nematodes in field corn. J Nematol 17:25–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam A, Siddiqui ZA, Mahmood I (1995) Integrated management of Meloidogyne incognita on tomato. Nematol Mediterr 23:245–247

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Godoy G, Rodriguez-Kabana R, Shelby RA, Morgan-Jones G (1983) Chitin amendments for control of Meloidogyne arenaria infested soil. II. Effects on microbial population. Nematropica 13:63–74

    Google Scholar 

  • Gogoi BB, Gill JS (2001) Compatibility of Pasteuria penetrans with carbofuran and organic amendments, its effect on Heterodera cajani. Ann Plant Prot Sci 9(2):254–257

    Google Scholar 

  • Gogoi D, Mahanta B (2013) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann Plant Prot Sci 21:172–175

    Google Scholar 

  • Gomes CB, De Freitas LG, Ferraz S, Oliveira RDDL, Da Silva RV (2002) Influence of cattle manure content in the substrate on the multiplication of Pasteuria penetrans in tomato. Nematol Brasil 26:59–65

    Google Scholar 

  • Gomiero T, Pimentel D, Paoletti MG (2011) Is there a need for a more sustainable agriculture? Crit Rev Plant Sci 30:6–23

    Google Scholar 

  • Gopinatha KV, Gowda DN, Nagesh M (2002) Management of root-knot nematode Meloidogyne incognita on tomato using bioagent Verticillium chlamydosporium, neem cake, marigold and carbofuran. Indian J Nematol 32:179–181

    Google Scholar 

  • Goswami BK, Pandey RK, Rathour KS, Bhattacharya C, Singh L (2006) Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants. J Zhejiang Univ Sci B 7(11):873–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health B 43(3):237–240

    CAS  PubMed  Google Scholar 

  • Grubišić D, Uroić G, Ivošević A, Grdiša M (2018) Nematode control by the use of antagonistic plants. Agric Conspec Sci 83(4):269–275

    Google Scholar 

  • Hallmann J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    CAS  Google Scholar 

  • Haseeb A, Kumar V, Abuzar S, Sharma A (2007) Integrated management of Meloidogyne incognita-Sclerotinia sclerotiorum disease complex of Mentha arvensis cv. Gomti by using Trichoderma species, neem seed powder, carbofuran and topsin-M. In: 7th national symposium on plant protection options implementation and feasibility. 20–22 Dec, p. 102

    Google Scholar 

  • Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30:285–292

    Google Scholar 

  • Haydock PPJ, Woods SR, Grove IG, Hare MC (2013) Chemical control of nematodes. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 459–479

    Google Scholar 

  • Hildalgo-Diaz L, Kerry BR (2008) Integration of biological control with other methods of nematode management. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetableand grain crops nematodes. Springer, Dordrecht, the Netherlands, pp 29–49

    Google Scholar 

  • Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93

    Google Scholar 

  • Hojat Jalali AA, Segers R, Coosemans J (1998) Biocontrol of Heterodera schachtii using combinations of the sterile fungus, StFCH1-l, Embellisia chlamydospora and Verticillium chlamydosporium. Nematologica 44:345–355

    Google Scholar 

  • Hollis JP, Rodriguez-Kabana RA (1966) Rapid kill of nematodes in flooded soil. Phytopathology 56:1015–1019

    CAS  PubMed  Google Scholar 

  • Hooks CRR, Wang K-H, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320

    Google Scholar 

  • Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107(1):47–56

    PubMed  Google Scholar 

  • Jaffee BA (2004) Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffee B, Phillips R, Muldoon A, Mangel M (1992) Density dependent host-pathogen dynamics in soil microcosms. Ecology 73:495–506

    Google Scholar 

  • Jaffee BA, Ferris H, Stapleton JJ, Norton MVK, Muldoon AE (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffee BA, Ferris H, Scow KM (1998) Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 88:344–350

    CAS  PubMed  Google Scholar 

  • Kaloshian I, Desmond OJ, Atamian HS (2011) Disease resistance-genes and defense responses during incompatible interactions. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, the Netherlands, pp 309–325

    Google Scholar 

  • Kerry BR (1987) Biological control. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Sydney, Australia, pp 233–263

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    CAS  PubMed  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006) Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl 51:643–658

    Google Scholar 

  • Khan MR, Mohiddin FA, Ejaz MN, Khan MM (2012) Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turk J Biol 36:161–169

    Google Scholar 

  • Knudsen GR, Dandurand LMC (2014) Ecological complexity and the success of fungal biological control agents. Adv Agric 2014:542703, 11 pages

    Google Scholar 

  • Ko MP, Schmitt DP (1996) Changes in plant-parasitic nematode populations in pineapple fields following inter-cycle cover crops. J Nematol 28:546–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koenning SR, Barker KR, Bowman DT (2001) Resistance as tactic for management of Meloidogyne incognita on cotton in North Carolina. J Nematol 33:126–131

    Google Scholar 

  • Kokalis-Burelle N, Mahaffee WF, Rodriguez-Kabana J, Kloepper W, Bowen KL (2002) Effects of switchgrass (Panicum virgatum) rotations with peanut (Arachis hypogaea L.) on nematode populations and soil microflora. J Nematol 34:98–105

    Google Scholar 

  • Kratochvil RJ, Sardanelli S, Everts K, Gallagher E (2004) Evaluation of crop rotation and other cultural practices for management of root-knot and lesion nematodes. Agron J 96:1419–1428

    Google Scholar 

  • Kruger DHM, Fourie JC, Malan AP (2013) Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. South Afr J Enol Viticulture 34(2):287–295

    Google Scholar 

  • Lalezar M, Moosavi MR, Hesami A (2016) Changes in zucchini defense responses against Meloidogyne javanica (Rhabditida: Meloidogynidae) induced by Pochonia chlamydosporia. Munis Entomol Zool 11(1):151–159

    Google Scholar 

  • Leadbeater A, Staub T (2014) Exploitation of induced resistance: a commercial perspective. In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell, Oxford, pp 300–315

    Google Scholar 

  • de Leij FAAM, Davies KG, Kerry BR (1992) The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans (Thorne) Sayre & Starr alone and in combination to control Meloidogyne incognita on tomato plants. Fundam Appl Nematol 15:235–242

    Google Scholar 

  • Liang L-M, Zou C-G, Xu J, Zhang KQ (2019) Signal pathways involved in microbe–nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos Trans Roy Soc B 374:20180317

    CAS  Google Scholar 

  • López-Lima D, Sánchez-Nava P, Carrión G, Núñez-Sánchez A (2013) 89% reduction of a potato cyst nematode population using biological control and rotation. Agron Sustain Dev 33(2):425–431

    Google Scholar 

  • Manzanilla-López RH, Esteves I, Powers SJ, Kerry BR (2011) Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Ann Appl Biol 159:118–129

    Google Scholar 

  • de Medeiros HA, Resende RS, Ferreira FC, Freitas LG, Rodrigues FÁ (2015) Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda 2:e10015. https://doi.org/10.4322/nematoda.10015

    Article  Google Scholar 

  • de Medeiros HA, de Araújo Filho JV, de Freitas LG, Castillo P, Rubio MB, Hermosa R, Monte E (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 7:40,216. https://doi.org/10.1038/srep40216

    Article  CAS  Google Scholar 

  • Mendoza AR, Sikora RA (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. BioControl 54:263–272

    Google Scholar 

  • Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34(1):1–8

    PubMed  PubMed Central  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Molinari S (2011) Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides. Plant Cell Rep 30:311–323

    CAS  PubMed  Google Scholar 

  • Moosavi MR (2017) The effect of gibberellin and abscisic acid on plant defense responses and on disease amount caused by Meloidogyne javanica on tomato plants. J Gen Plant Pathol 83(3):173–184

    CAS  Google Scholar 

  • Moosavi MR, Askary TH (2015) Nematophagous fungi- commercialization. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 187–202

    Google Scholar 

  • Moosavi MR, Ghani M (2019) The optimal concentrations of Purpureocillium lilacinum and jasmonic acid in controlling Meloidogyne javanica on tomato. Arch Phytopathology Plant Protect 52(6–7):582–600

    Google Scholar 

  • Moosavi MR, Zare R (2012) Fungi as biological control agents of plant-parasitic nematodes. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, progress in biological control 12. Dordrecht, Netherlands, Springer Science + Business Media, pp 67–107

    Google Scholar 

  • Moosavi MR, Zare R (2015) Factors affecting commercial success of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 423–445

    Google Scholar 

  • Moosavi MR, Zare R (2016) Present status and the future prospects of microbial biopesticides in Iran. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 293–305

    Google Scholar 

  • Moosavi MR, Shakeri S, Mohammadi S (2015) The ability of separate and combined application of five nematopathogenic fungi against Meloidogyne javanica. Iran J Plant Prot Sci 46(1):179–190; in Persian with English abstract

    Google Scholar 

  • Mostafanezhad H, Sahebani N, Nourinejhad Zarghani S (2014) Control of root-knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocontrol Sci Tech 24(2):203–215

    Google Scholar 

  • Nagesh M, Jankiram T (2004) Root-knot nematode problem in polyhouse roses and its management using dazomat, neem cake and Pochonia chlamydosporia (Verticillium chlamydosporium). J Ornamental Hortic New Series 7(2):147–152

    Google Scholar 

  • Narasimhamurthy HB, Ravindra H, Sehgal M (2017) Management of rice root-knot nematode, Meloidogyne graminicola. Int J Pure Appl Biosci 5:268–276

    Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer Science + Business Media, Dordrecht, the Netherlands, pp 21–43

    Google Scholar 

  • Noel GR, Atibalentja N, Bauer SJ (2010) Suppression of Heterodera glycines in a soybean field artificially infested with Pasteuria nishizawae. Nematropica 40:41–52

    Google Scholar 

  • Oduor-Owino P (2003) Integrated management of root-knot nematodes using agrochemicals, organic matter and the antagonistic fungus, Paecilomyces lilacinus in natural field soil. Nematol Mediterr 31:121–123

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol 44:101–115

    Google Scholar 

  • Owino OP (1992) Effect of marigold leaf extract and captafol on fungal parasitism of root knot nematode eggs—Kenyan isolates. Nematol Mediterr 20:211–213

    Google Scholar 

  • Paparu P, Dubois T, Coyne D, Viljoen A (2007) Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiol Mol Plant Pathol 71:149–157

    Google Scholar 

  • Ploeg A (2008) Biofumigation to manage plant-parasitic nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, the Netherlands, pp 239–248

    Google Scholar 

  • Puertas A, Hidalgo-Díaz L (2007) Influence of the host plant and its interaction with Meloidogyne incognita on the effectiveness of Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal 22(2):104–109; in Spanish with English abstract

    Google Scholar 

  • Reddy PP, Rao MS, Nagesh M (1996) Management of the citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Mediterr 24:265–267

    Google Scholar 

  • Reddy PP, Rao MS, Nagesh M (1999) Eco-friendly management of Meloidogyne incognita on tomato by integration of Verticillium chlamydosporium with neem and calotropis leaves. J Plant Dis Prot 106(5):530–533

    Google Scholar 

  • Renčo M (2013) Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 50(1):3–14

    Google Scholar 

  • Roberts PA (2002) Concepts and consequences of resistance. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CABI Publishing, Wallingford, pp 23–41

    Google Scholar 

  • Rodriguez-Kabana R, Morgan-Jones G, Chet I (1987) Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100(1–3):237–247

    Google Scholar 

  • Roget DK, Rovira AD (1987) A review on the effect of tillage on cereal cyst nematode. Wheat Research Council of Australia, Workshop Report Series, No. 1, pp 31–35

    Google Scholar 

  • Rumbos CI, Kiewnick S (2006) Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil 283:25–31

    CAS  Google Scholar 

  • Sajadi Z, Moosavi MR, Moaf-Poorian GR (2016) The effect of soil texture and organic matter on ability of Trichoderma longibrachiatum in controlling Meloidogyne javanica and growth promoting of kidney bean. Iran J Plant Prot Sci 46(2):227–240

    Google Scholar 

  • Sano Z (2002) Nematode management strategies in east Asian countries. Nematology 4:129–130

    Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of plant-parasitic nematodes by fungi: a review. Bioresour Technol 58:229–239

    CAS  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Google Scholar 

  • Sikora RA, Bridge J, Starr JL (2005) Management practices: an overview of integrated nematode management technologies. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. Wallingford, CABI Publishing, pp 793–825

    Google Scholar 

  • Sipes BS, Schmitt DP (1998) Nematode-pesticide interactions. In: Barker KR, Pederson GA, Windham GL (eds) Plant and nematode interactions. American Society of Agronomy, Madison, WI, pp 173–185

    Google Scholar 

  • Sokhandani Z, Moosavi MR, Basirnia T (2016) Optimum levels of Trichoderma longibrachiatum concentration and cadusafos dose in controlling Meloidogyne javanica on zucchini plants. J Nematol 48(1):54–63

    PubMed  PubMed Central  Google Scholar 

  • Somasekhar N, Gill JS (1991) Efficacy of Pasteuria penetrans alone and in combination with carbofuran controlling Meloidogyne incognita. Indian J Nematol 21:61–65

    Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24:601–613

    Google Scholar 

  • Starr JL, McDonald AH, Claudius-Cole AO (2013) Nematode resistance in crops. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, pp 411–436

    Google Scholar 

  • Stirling GR (1988) Biological control of plant-parasitic nematodes. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes, volume II. CRC Press, Boca Raton, Fl, pp 93–139

    Google Scholar 

  • Stirling GR (1999) Increasing the adoption of sustainable, integrated management strategies for soilborne diseases of high-value annual crops. Australas Plant Pathol 28:72–79

    Google Scholar 

  • Stirling GR (2014) The soil environment and the soil–root interface. In: Stirling GR (ed) Biological control of plant-parasitic nematodes, soil ecosystem management in sustainable agriculture, 2nd edn. CABI Publishing, Wallingford, UK, pp 15–47

    Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM, Pankurst CE, Moody PW, Bell MJ, Halpin N (2005) Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in a sugarcane soil. Australas Plant Pathol 34:203–211

    Google Scholar 

  • Stirling GR, Halpin NV, Bell MJ (2011) A surface mulch of crop residues enhances suppressiveness to plant-parasitic nematodes in sugarcane soils. Nematropica 41:109–121

    Google Scholar 

  • Stirling GR, Smith MK, Smith JP, Stirling AM, Hamill SD (2012) Organic inputs, tillage and rotation practices influence soil health and suppressiveness to soilborne pests and pathogens of ginger. Australas Plant Pathol 41:99–112

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    CAS  PubMed  Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigold (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262(1–2):241–249

    CAS  Google Scholar 

  • Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128

    Google Scholar 

  • Taba S, Moromizato K, Takaesu Z, Ooshiru A, Nasu K (2006) Control of the southern root-knot nematode, Meloidogyne incognita using granule formulations containing nematode-trapping fungus, Monacrosporium ellipsosporum and a nematicide. Jap J Appl Entomol Zool 50:115–122

    CAS  Google Scholar 

  • Takur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412. https://doi.org/10.1155/2013/762412

    Article  CAS  Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2002a) Combined application of Glomus sp. and Pasteuria penetrans for reducing Meloidogyne incognita (Tylenchida: Meloidogynidae) populations and improving tomato growth. Appl Entomol Zool 37:61–67

    Google Scholar 

  • Talavera M, Mizukubo T, Itou K, Aiba S (2002b) Effect of spore inoculum and agricultural practices on the vertical distribution of the biocontrol plant-growth-promoting bacterium Pasteuria penetrans and growth of Meloidogyne incognita-infected tomato. Biol Fertil Soils 35:435–440

    Google Scholar 

  • Thoden TC, Korthals G, Termorshuizen A (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematology 13:133–153

    Google Scholar 

  • Timper P (1999) Effect of crop rotation and nematicide use on abundance of Pasteuria penetrans. J Nematol 31:575; abstract

    Google Scholar 

  • Timper P (2011) Utilization of biological control for managing plant-parasitic nematodes. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, London, pp 259–289

    Google Scholar 

  • Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol 46(2):75–89

    PubMed  PubMed Central  Google Scholar 

  • Timper P, Brodie BB (1994) Effect of host-plant resistance and a nematode pathogenic fungus on Pratylenchus penetrans. Phytopathology 84:1090; abstract

    Google Scholar 

  • Timper P, Parajuli G (2012) Suppression of Meloidogyne incognita by Paecilomyces lilacinus is enhanced by planting cover crops. J Nematol 44:494–495; abstract

    Google Scholar 

  • Timper P, Minton NA, Johnson AW, Brenneman TB, Culbreath AK, Burton GW, Baker SH, Gascho GJ (2001) Influence of cropping systems on stem rot (Sclerotium rolfsii), Meloidogyne arenaria and the nematode antagonist Pasteuria penetrans in peanut. Plant Dis 85:767–772

    CAS  PubMed  Google Scholar 

  • Timper P, Davis R, Jagdale G, Herbert J (2012) Resiliency of a nematode community and suppressive service to tillage and nematicide application. Appl Soil Ecol 59:48–59

    Google Scholar 

  • Tobin JD, Haydock PPJ, Hare MC, Woods SR, Crump DH (2008) Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallid and G. rostochiensis) in potato crops grown under UK field conditions. Biol Control 46:194–201

    Google Scholar 

  • Trivedi PC, Barker KR (1986) Management of nematodes by cultural practices. Nematropica 16:213–236

    Google Scholar 

  • Tzortzakakis EA, Goewn SR (1994) Evaluation of Pasteuria penetrans alone and in combination with oxamyl, plant resistance and solarization for control of Meloidogyne spp. on vegetables grown in greenhouses in Crete. Crop Prot 13:455–462

    Google Scholar 

  • Van den Boogert PHJF, Velvis H, Ettema CH, Bouwman LA (1994) The role of organic matter in the population dynamics of the endoparasitic nematophagous fungus Drechmeria coniospora in microcosms. Nematologica 40:249–257

    Google Scholar 

  • Verdejo-Lucas S, Sorribas FJ, Ornat C, Galeano M (2003) Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol 52:521–528

    Google Scholar 

  • Viaene NM, Abawi GS (2000) Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce. J Nematol 32(1):85–100

    Google Scholar 

  • Viaene N, Coyne DL, Davies KG (2013) Biological and cultural management. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 383–410

    Google Scholar 

  • Vieira Dos Santos MC, Curtis RHC, Abrantes I (2014) The combined use of Pochonia chlamydosporia and plant defence activators—a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathol Mediterr 53(1):66–74

    CAS  Google Scholar 

  • Walker GE, Wachtel MF (1988) The influence of soil solarization and non-fumigant nematicides on infection of Meloidogyne javanica by Pasteuria penetrans. Nematologica 34:477–483

    CAS  Google Scholar 

  • Walters DR (2011) Sounding the alarm: signaling and communication in plant defense. In: Walters DR (ed) Plant defense: warding off attack by pathogens, herbivores, and parasitic plants. Blackwell Publishing, Oxford, pp 77–124

    Google Scholar 

  • Walters DR, Bennett AE (2014) Microbial induction of resistance to pathogens. In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing, Oxford, pp 149–170

    Google Scholar 

  • Wang KH, Sipes BS, Schmitt DP (2001) Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Tagetes erecta. Nematropica 31:235–249

    Google Scholar 

  • Wang K-H, Sipes BS, Schmitt DP (2002) Management of Rotylenchulus reniformis in pineapple, Ananas comosus, by intercycle cover crops. J Nematol 34:106–114

    Google Scholar 

  • Wang KH, Sipes BS, Schmitt DP (2003) Enhancement of Rotylenchulus reniformis suppressiveness by Crotalaria juncea amendment in pineapple soils. Agric Ecosyst Environ 94:197–203

    Google Scholar 

  • Wang K-H, Mcsorley R, Gallaher RN, Kokalis-Burelle N (2008) Cover crops and organic mulches for nematode, weed and plant health management. Nematology 10(2):231–242

    Google Scholar 

  • Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, Bakker PAHM (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412

    Google Scholar 

  • Westphal A (2011) Sustainable approaches to the management of plant-parasitic nematodes and disease complexes. J Nematol 43(2):122–125

    PubMed  PubMed Central  Google Scholar 

  • Westphal A, Becker JO (2001) Soil suppressiveness to Heterodera schachtii under different cropping sequences. Nematology 3:551–558

    Google Scholar 

  • Widmer TL, Mitkowski NA, Abawi GS (2002) Soil organic matter and management of plant-parasitic nematodes. J Nematol 34:289–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X-M, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    CAS  PubMed  Google Scholar 

  • Zaki MJ, Maqbool MA (1991) Combined efficacy of Pasteuria penetrans and other biocontrol agents on the control of root-knot nematode on okra. Pak J Nematol 9:49–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Moosavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moosavi, M.R. (2020). Efficacy of Microbial Biocontrol Agents in Integration with Other Managing Methods against Phytoparasitic Nematodes. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_10

Download citation

Publish with us

Policies and ethics