Advertisement

Predictive Models in Human Development Planning

Chapter
  • 72 Downloads

Abstract

This chapter is the concluding chapter of the work which incorporates those discussions that will provide useful information for the policy implication of the study area leading to the betterment in different dimensions of human development. Primarily, this chapter focuses on the effectiveness of some statistical tools as support for the decision making process in strategy formulations. The work uses the Classification and Regression Tree (CART), Multiple Adaptive Regression Splines (MARS), and Partial Least Square path model (PLS-path) for this purpose. The result of the analysis generated by the software has been reported briefly. These results and direct experiences gathered from the field during the socio-economic survey help in suggesting some strategies for the betterment of human development scenario in the district of Purulia. All these techniques have the potentials to be used in HD planning as per the choice of the users.

Keywords

CART MARS Structural equations PLS HD planning 

References

  1. Ali F, Rasoolemanesh SM, Sarstedt M, Ringle CM, Ryu K (2018) An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. Int J Contemp Hospitality Manag 30(1):514–538CrossRefGoogle Scholar
  2. Allison GT (1971) Essence of decision. Little Brown, Boston, MassGoogle Scholar
  3. Bagozzi RP, Yi Y (1981) On the evaluation of structural equation models. J Acad Mark Sci 16:74–94Google Scholar
  4. Bansal P, Salling J (2013) Multivariate Adaptive Regression Splines (MARS). Class Lecture dated 16 Feb 2013, University of Texas: Electrical & Computer EngineeringGoogle Scholar
  5. Baulch R, McCulloch N (2000) Tracking pro-poor growth. ID21 insights 31Google Scholar
  6. Bishop YMM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. The MIT Press, CambridgeGoogle Scholar
  7. Bollen KA, Bauldry S (2011) Three Cs in measurement models: causal indicators, composite indicators, and covariates. Psychol Methods 16(3):265CrossRefGoogle Scholar
  8. Bollen KA (2011) Evaluating effect, composite, and causal indicators in structural equation models. Mis Q 359–372Google Scholar
  9. Borsboom D, Mellenbergh GJ, Van Heerden J (2003) The theoretical status of latent variables. Psychol Rev 110(2):203CrossRefGoogle Scholar
  10. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, BelmontGoogle Scholar
  11. Chin WW (2010) How to write up and report PLS analyses. Handbook of partial least squares. Springer, Berlin, Heidelberg, pp 655–690CrossRefGoogle Scholar
  12. Cho E (1978) Making reliability reliable: a systematic approach to reliability coefficient. Organ Res Methods 19(4):651–682CrossRefGoogle Scholar
  13. Coltman T, Devinney TM, Midgley DF, Venaik S (2008) Formative versus reflective measurement models: two applications of formative measurement. J Bus Res 61(12):1250–1262CrossRefGoogle Scholar
  14. Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16(3):297–334CrossRefGoogle Scholar
  15. Diamantopoulos A, Winklhofer HM (2001) Index construction with formative indicators: an alternative to scale development. J Mark Res 38(2):269–277CrossRefGoogle Scholar
  16. Diamantopoulos A (2011) Incorporating formative measures into covariance-based structural equation models. MIS Q 335–358Google Scholar
  17. Dijkstra TK (2010a) Latent variables and indices: herman Wold’s basic design and partial least squares. Handbook of partial least squares. Springer, Berlin, Heidelberg, pp 23–46Google Scholar
  18. Dijkstra TK (2010b) Latent variables and indices: Herman Wold’s basic design and partial least squares. In: Esposito Vinzi V, Chin, WW, Henseler J, Wang H (eds.) Handbook of partial least squares: concepts, methods and applications. Springer, Berlin, pp 23e46Google Scholar
  19. Dijkstra TK, Henseler J (2012) Consistent and asymptotically normal PLS estimators for linear structural equations. https://www.rug.nl/staff/t.k.dijkstra/Dijkstra-Henseler-PLSc-linear.pdf
  20. Director of Mines and Minerals (2001) Govt. of West BengalGoogle Scholar
  21. District Statistical Handbook—Purulia (2014) Department of statistics and programme implementation. Govt. of West BengalGoogle Scholar
  22. Do Valle PO, Assaker G (2016) Using partial least squares structural equation modeling in tourism research: a review of past research and recommendations for future applications. J. Travel Res 55(6):695–708CrossRefGoogle Scholar
  23. Doyle P (1973) The use of automatic interaction detector and similar search procedures. J Oper Res Soc 24(3):465–467CrossRefGoogle Scholar
  24. Duclos J, Wodon Q (2003) Pro-poor growth. World Bank, Mimeo, Washington, DCGoogle Scholar
  25. Einhorn HJ (1972) Alchemy in the behavioural sciences. Public Opin. Quart 36:367–378CrossRefGoogle Scholar
  26. Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) (2010) Handbook of partial least squares: concepts, methods and applications (Springer Handbooks of Computational Statistics Series, vol II. Springer, HeidelbergGoogle Scholar
  27. Facon T (2000) Water management in rice in Asia: some issues for the future. Bridging the rice yield gap in the Asia-Pacific region. FAO RAP, Bangkok, pp 178–200Google Scholar
  28. Falk RF, Miller NB (1992) A primer for soft modeling. University of Akron PressGoogle Scholar
  29. Felicisimo A, Cuartero A, Remondo J, Quiros E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189.  https://doi.org/10.1007/s10346-012-0320-1CrossRefGoogle Scholar
  30. Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189CrossRefGoogle Scholar
  31. Fornell C, David FL (1981) Evaluating structural equation models with unobservable variables and measurement error. J Mark Res 18(1):39–50CrossRefGoogle Scholar
  32. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67CrossRefGoogle Scholar
  33. Garson GD (2016) Partial least squares: regression and structural equation models. Statistical Associates Publishers, Asheboro, NCGoogle Scholar
  34. Gefen D, Rigdon EE, Straub D (2011) An update and extension to SEM guidelines for administrative and social science research. MIS Q 35(2):iii–xivCrossRefGoogle Scholar
  35. Haenlein M, Kaplan AM (2004) A beginner’s guide to partial least squares analysis. Underst Stat 3(4):283–297CrossRefGoogle Scholar
  36. Hair JF, Hult GTM, Ringle CM, Sarstedt M (2017) A primer on partial least squares structural equation modeling (PLS-SEM), 2nd edn. Sage, Thousand OaksGoogle Scholar
  37. Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theory Pract 19(2):139–152CrossRefGoogle Scholar
  38. Hanmer L, Booth D (2001) Pro-poor growth: why do we need it?. ODI, LondonGoogle Scholar
  39. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business MediaGoogle Scholar
  40. Henseler J, Dijkstra TK, Sarstedt M, Ringle CM, Diamantopoulos A, Straub DW, Ketchen DJ, Hair JF, Hult GTM, Calantone RJ (2014) Common Beliefs and Reality about Partial Least Squares: Comments on Rönkkö & Evermann (2013). Organ Res Meth 17(2):182–209CrossRefGoogle Scholar
  41. International Rice Research Institute (IRRI) (2018) Water management (Online documents). http://www.knowledgebank.irri.org/ericeproduction/PDF_&_Docs/WaterMgmt.pdf. Accessed on 14 Mar 2018
  42. Li-tze Hu, Bentler Peter M (1999) Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Eqn Model Multi J 6:1–55.  https://doi.org/10.1080/10705519909540118CrossRefGoogle Scholar
  43. Jöreskog KG (1969) A general approach to confirmatory maximum likelihood factor analysis. Psychometrika 34(2):183–202CrossRefGoogle Scholar
  44. Jöreskog KG (1971) Statistical analysis of sets of congeneric tests. Psychometrika 19(2):109–133CrossRefGoogle Scholar
  45. Kakwani N, Pernia EM (2000) What is pro-poor growth? Asian Dev Rev 18(1):1–16Google Scholar
  46. Kakwani N, Son HH (2008) Poverty equivalent growth rate. Rev Income Wealth 54(4):643–655CrossRefGoogle Scholar
  47. Kaufmann L, Gaeckler J (2015) A structured review of partial least squares in supply chain management research. J Purchasing Supply Manag 21(4):259–272CrossRefGoogle Scholar
  48. Klasen S (2003) In search of the holy grail. How to achieve pro-poor growth. In: Towards pro-poor policies. Proceedings from the ABCDE Europe, pp 3–93Google Scholar
  49. Kline R (2011) Principles and practice of structural equation modeling (Third ed.). Guilford. ISBN 978-1-60623-876-9Google Scholar
  50. Latan H, Noonan R (eds) (2017) Partial least squares path modeling: Basic concepts, methodological issues and applications. Springer, BerlinGoogle Scholar
  51. Lee L, Petter S, Fayard D, Robinson S (2011) On the use of partial least squares path modeling in accounting research. Int J Acc Inf Syst 12(4):305–328CrossRefGoogle Scholar
  52. Lindblom CE (1968) The policy-making process. Prentice-HallGoogle Scholar
  53. Loh WY (2011) Classification and regression trees. In: WIREs data mining and knowledge discovery, Volume 1, January/February 2011. Wiley, pp 14–23Google Scholar
  54. Lohmöller J-B (1989) Latent variable path modeling with partial least squares. Physica, HeidelbergGoogle Scholar
  55. Marsh LC, Cormier DR (2001) Spline regression models (No. 137). SageGoogle Scholar
  56. McDonald RP (1996) Path analysis with composite variables. Multivar Behav Res 31(2):239–270CrossRefGoogle Scholar
  57. Messenger R, Mandell L (1972) A modal search technique for predictive nominal scale multivariate analysis. J Am Stat Assoc 67(340):768–772Google Scholar
  58. Mintzberg H (1978) Patterns in strategy formation. Manage Sci 24(9):934–948CrossRefGoogle Scholar
  59. Morgan JN, Sonquist JA (1963) Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 58(302):415–434CrossRefGoogle Scholar
  60. MSME (2014) Brief industrial profile of Purulia District West Bengal. www.dcmsme.gov.in/dips/PURULIA_wb.pdf. Accessed on 06 May 2014
  61. Nitzl C, Roldan JL, Cepeda G (2016) Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Ind Manag data Syst 116(9):1849–1864CrossRefGoogle Scholar
  62. Nunnally JC (1978) Assessment of reliability. In: Psychometric theory (2nd ed.). McGraw-Hill, New YorkGoogle Scholar
  63. Panigrahi BK, Suganthan PN, Das S, Dash SS (eds) (2013) Swarm, evolutionary, and memetic computing: 4th international conference, SEMCCO 2013, Chennai, India, December 19–21, 2013, Proceedings (vol 8297). Springer, BerlinGoogle Scholar
  64. Peng DX, Lai F (2012) Using partial least squares in operations management research: a practical guideline and summary of past research. J Oper Manag 30(6):467–480CrossRefGoogle Scholar
  65. Ravallion M, Chen S (2003) Measuring pro-poor growth. Econ Lett 78(1):93–99CrossRefGoogle Scholar
  66. Ramayah T, Cheah J, Chuah F, Ting H, Memon MA (2016) Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0—An updated and practical guide to statistical analysis. Singapore, PearsonGoogle Scholar
  67. Rice EB (1997) Paddy irrigation and water management in Southeast Asia. The World BankGoogle Scholar
  68. Richter NF, Sinkovics RR, Ringle CM, Schlaegel C (2016) A critical look at the use of SEM in international business research. Int Mark Rev 33(3):376–404CrossRefGoogle Scholar
  69. Ringle CM, Wende S, Becker JM (2015) SmartPLS 3. Boenningstedt: SmartPLS GmbH. http://www.smartpls.com
  70. Sarstedt M, Ringle CM, Hair JF (2017) Partial least squares structural equation modeling. In: Homburg C et al. (ed) Handbook of market research. Springer International PublishingGoogle Scholar
  71. Sarstedt M, Diamantopoulos A, Salzberger T, Baumgartner P (2016) Selecting single items to measure doubly concrete constructs: a cautionary tale. J Bus Res 69(8):3159–3167CrossRefGoogle Scholar
  72. Son HH (2003) A new poverty decomposition. J Econ Inequality 1(2):181–187CrossRefGoogle Scholar
  73. Sörbom D (2001) Karl Jöreskog and LISREL: a personal story. Struct Eqn Model: Present Future. Festschrift Honor Karl Joreskog 3(10)Google Scholar
  74. Sosik JJ, Kahai SS, Piovoso MJ (2009) Silver bullet or voodoo statistics? A primer for using the partial least squares data analytic technique in group and organization research. Group Org Manage 34(1):5–36CrossRefGoogle Scholar
  75. Steiner GA (1969) Top management planning Macmillan. In: New York 1969 Quoted on page 481 of project management handbookGoogle Scholar
  76. Tenenhaus M (2008) Component-based structural equation modelling. Total Qual Manag 19(7–8):871–886CrossRefGoogle Scholar
  77. WBMDTC (2018) Official website. http://wbmdtcltd.com/mineral-map. Accessed on 21 Mar 2018
  78. Werts CE, Rock DR, Linn RL, Jöreskog KG (1978) A general method of estimating the reliability of a composite. Educ Psychol Meas 38(4):933–938.  https://doi.org/10.1177/001316447803800412
  79. White H, Anderson E (2001) Growth versus distribution: does the pattern of growth matter? Dev Policy Rev 19(3):267–289CrossRefGoogle Scholar
  80. Wold H (1982a) Soft modeling: the basic design and some extensions. Syst Under Indirect Obs 2:343Google Scholar
  81. Wold H (1982b) Soft modelling: the basic design and some extensions. In: Jöreskog KG, Wold HOA (eds) Systems under indirect observation: causality, structure, prediction. vol II. North-Holland, Amsterdam, New York, Oxford, pp 1–54Google Scholar
  82. Wong K (2013) Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark Bull 24(1):1–32Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of GeographyDr. Meghnad Saha CollegeItaharIndia
  2. 2.Department of GeographyPresidency UniversityKolkataIndia

Personalised recommendations