Skip to main content

Medical Imaging of Ischemic Stoke

  • Chapter
  • First Online:
Diagnostic Neuroradiology
  • 1511 Accesses

Abstract

CT is the first tool for the diagnosis of acute infarction, but CT is not sensitive to detect early infarction. Several signs of early stages of MCA infarction are noted, including loss of insular ribbon sign, obscuration of lentiform nucleus sign, loss of gray–white matter contrast sign, effacement of cortical sulci sign, and bright MCA sign. The DWI of MRI can accurately diagnose large and small infarctions at a very early stage because the infarct area is cytotoxic edema with diffusion restriction, showing bright (hyperintense) in DWI. CT perfusion is a method to determine whether the infarction is in golden 6 h. Using parameters, such as CBF, CBV, MTT, and DT, can determine the core and penumbra of the hypoperfusion area to determine whether to perform IV thrombolysis and IA thrombectomy. Cerebral vein and venous sinus thrombosis may cause venous infarction edema similar to arterial infarction edema on CT. CT can identify the thrombus as an “empty delta sign.” MRI reveals that the venous infarction edema is cytotoxic edema in the middle and combines with peripheral vasogenic edema. The brain damage caused by CO poisoning is primarily in the bilateral globus pallidus, and severe poisoning may involve the centrum semiovale. These brain injuries are also bright in DWI. Moyamoya disease is stenosis and occlusion of the distal ICA with smoke-like collateral circulation vessels in the brain. In adults, it may present ICH and IVH and in children it may present ischemic infarction. Small vessel diseases include leukoaraiosis, microbleeds, and dilated Virchow–Robin spaces. Using variable pulse sequences, MRI is more sensitive than CT in diagnosing small vessel diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith WS, et al. Cerebrovascular diseases. In: Harrison’s principle of internal medicine. 18th ed. New York: McGraw-Hill; 2012. p. 3275.

    Google Scholar 

  2. Allen LM, et al. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics. 2012;32:1285–97.

    Article  PubMed  Google Scholar 

  3. Shen JM, et al. The use of MRI apparent diffusion coefficient (ADC) in monitoring the development of brain infarction. BMC Med Imaging. 2011;11:1–4.

    Article  CAS  Google Scholar 

  4. Truwit CL, et al. Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology. 1990;176:801–6.

    Article  CAS  PubMed  Google Scholar 

  5. Tomura N, et al. Early CT finding in cerebral infarction: obscuration of the lentiform nucleus. Radiology. 1988;168:463–7.

    Article  CAS  PubMed  Google Scholar 

  6. Moulin T, et al. Early CT signs in acute middle cerebral artery infarction: predictive value for subsequent infarct locations and outcome. Neurology. 1996;47:366–75.

    Article  CAS  PubMed  Google Scholar 

  7. Pressman BD, et al. An early sign of ischemic infarction: increased density in a cerebral artery. AJNR. 1987;8:645–8.

    PubMed Central  Google Scholar 

  8. Schuierer G, Huk W. The unilateral hyperdense middle cerebral artery: an early CT-sign of embolism or thrombosis. Neuroradiology. 1988;30:120–2.

    Article  CAS  PubMed  Google Scholar 

  9. Von Kummer R, et al. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001;219:95–100.

    Article  Google Scholar 

  10. Treadwell SD, Thanvi B. Malignant middle cerebral artery (MCA) infarction: pathophysiology, diagnosis and management. Postgrad Med J. 2010;86:235–42.

    PubMed  Google Scholar 

  11. Jaillard A, et al. Hemorrhagic transformation in acute ischemic stroke. The MAST-E Study. MAST-E Group. Stroke. 1999;30:1326–32.

    Article  CAS  PubMed  Google Scholar 

  12. Arboix A, et al. Malignant middle cerebral artery infarction: a clinical study of 32 patients. Rev Investig Clin. 2015;67:64–70.

    Google Scholar 

  13. Bladin PF, Berkovic SF. Striatocapsular infarction: large infarcts in the lenticulostriate arterial territory. Neurology. 1984;34:1423–30.

    Article  CAS  PubMed  Google Scholar 

  14. Donnan GA, et al. The stroke syndrome of striatocapsular infarction. Brain. 1991;114:51–70.

    PubMed  Google Scholar 

  15. Kumral E, et al. Spectrum of anterior cerebral artery territory infarction: clinical and MRI findings. Eur J Neurol. 2002;9:615–24.

    Article  CAS  PubMed  Google Scholar 

  16. Merwick Á, Werring D. Posterior circulation ischaemic stroke. BMJ. 2014;348:28–34.

    Article  CAS  Google Scholar 

  17. Tohgi H, et al. Cerebellar infarction, clinical and neuroimaging analysis in 293 patients. Stroke. 1993;24:1697–701.

    Article  CAS  PubMed  Google Scholar 

  18. Ortiz de Mendivil A, et al. Brainstem stroke: anatomy, clinical and radiological findings. Semin Ultrasound CT MRI. 2013;34:131–41.

    Article  Google Scholar 

  19. Kumral E, et al. Clinical spectrum of pontine infarction, clinical-MRI correlation. J Neurol. 2002;249:1659–70.

    Article  PubMed  Google Scholar 

  20. Benders P, et al. Central pontine myelinolysis: case report and short overview. Neth J Crit Care. 2017;25:129–32.

    Google Scholar 

  21. Kim JS, Kim J. Pure midbrain infarction, clinical, radiologic and pathophysiologic findings. Neurology. 2005;64:1227–32.

    Article  PubMed  Google Scholar 

  22. Mangla R, et al. Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics. 2011;31:1201–14.

    Article  PubMed  Google Scholar 

  23. Wong KS, et al. Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoring study. Ann Neurol. 2002;52:74–81.

    Article  PubMed  Google Scholar 

  24. Derdeyn CP, et al. Severe hemodynamic impairment and border zone-region infarction. Radiology. 2001;220:195–201.

    Article  CAS  PubMed  Google Scholar 

  25. Kim DE, et al. Association of internal border zone infarction with middle cerebral artery steno-occlusion. Eur Neurol. 2010;64:178–85.

    Article  PubMed  Google Scholar 

  26. Moustafa RR, et al. Microembolism versus hemodynamic impairment in rosary-like deep watershed infarcts: a combined positron emission tomography and transcranial Doppler study. Stroke. 2011;42:3138–43.

    Article  PubMed  Google Scholar 

  27. Fisher GM. Lacunes. Small, deep cerebral infarcts. Neurology. 1965;15:774–84.

    Article  CAS  PubMed  Google Scholar 

  28. Fisher GM. Lacunar strokes and infarcts: a review. Neurology. 1982;32:871–6.

    Article  CAS  PubMed  Google Scholar 

  29. Gerraty RP, et al. Examining the lacunar hypothesis with diffusion and perfusion magnetic resonance imaging. Stroke. 2002;33:2019–24.

    Article  PubMed  Google Scholar 

  30. Schonewille WJ, et al. Diffusion-weighted MRI in acute lacunar syndromes: a clinical-radiological correlation study. Stroke. 1999;30:2066–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez RG. Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”. AJNR Am J Neuroradiol. 2006;27:728–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell BC, et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke. 2011;42:3435–40.

    Article  PubMed  Google Scholar 

  33. de Lucas EM, et al. CT protocol for acute stroke: tips and tricks for general radiologist. Radiographics. 2008;28:1673–87.

    Article  PubMed  Google Scholar 

  34. Wing SC, Markus HS. Interpreting CT perfusion in stroke. Pract Neurol. 2019;190:136–42.

    Article  Google Scholar 

  35. Albers GW, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bivard A, et al. Perfusion computer tomography: imaging and clinical validation in acute ischemic stroke. Brain. 2011;134:3408–16.

    Article  PubMed  Google Scholar 

  37. Rudilosso S, et al. Perfusion deficits and mismatch in patients with acute lacunar infarcts studied with whole-brain CT perfusion. AJNR Am J Neuroradiol. 2015;36:1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muttikkal TJ, Wintermark M. MRI pattern of global hypoxic-ischemic injury in adults. J Neuroradiol. 2013;40:164–71.

    Article  PubMed  Google Scholar 

  39. Arbelaez A, et al. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol. 1999;20:999–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee EJ. The empty delta sign. Radiology. 2002;224:788–9.

    Article  PubMed  Google Scholar 

  41. Lovblad K-O, et al. Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis. 2001;11:169–76.

    Article  CAS  PubMed  Google Scholar 

  42. Wasay M, et al. Diffusion-weighted magnetic resonance imaging in superior sagittal sinus thrombosis. J Neuroimaging. 2002;12(3):267–9.

    Article  PubMed  Google Scholar 

  43. Varrassi M, et al. Advanced neuroimaging of carbon monoxide poisoning. Neuroradiol J. 2017;30:461–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim DM, et al. Acute carbon monoxide poisoning: MR imaging findings with clinical correlation. Diagn Interv Imaging. 2017;98:299–306.

    Article  CAS  PubMed  Google Scholar 

  45. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37.

    Article  CAS  PubMed  Google Scholar 

  46. Grinberg LT, Thal DR. Vascular pathology in the aged human brain. Acta Neuropathol. 2010;119:277–90.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 2002;12:358–70.

    PubMed  Google Scholar 

  48. Gouw AA, et al. Heterogeneity of small vessels disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126–35.

    Article  PubMed  Google Scholar 

  49. Grueter BE, Schulz UG. Age-related cerebral white matter disease (leukoaraiosis), a review. Postgrad Med J. 2012;88:79–87.

    Article  PubMed  Google Scholar 

  50. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28:652–9.

    Article  CAS  PubMed  Google Scholar 

  51. Fazekas F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wardlaw JM, et al. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–97.

    Article  PubMed  Google Scholar 

  53. Roob G, et al. Frequency and location of microbleeds in patients with primary intracerebral hemorrhage. Stroke. 2000;31:2665–9.

    Article  CAS  PubMed  Google Scholar 

  54. Greenberg SM, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Barkohof F. Enlarged Virchow-Robing spaces: do they matter? J Neurol Neursurg Psychy. 2004;75:1516–7.

    Article  Google Scholar 

  56. Joutel A, et al. Notch3 mutation in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383:707–10.

    Article  CAS  PubMed  Google Scholar 

  57. Chen YC. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neurol Taiwanica. 2014;23:64–74.

    CAS  Google Scholar 

  58. Stojanov D, et al. Imaging characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Bosn J Basic Med Sci. 2015;15:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Chung Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, WC. (2021). Medical Imaging of Ischemic Stoke. In: Diagnostic Neuroradiology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4051-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4051-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4050-9

  • Online ISBN: 978-981-15-4051-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics