Skip to main content

A Single-Phase Multi-level Inverter Using a Lesser Number of Switching Devices

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1154))

  • 956 Accesses

Abstract

The multi-level inverters with the reduced components are becoming prevalent because a higher number of output voltage levels can be achieved using a comparatively lesser number of devices. This paper proposes a generalized configuration of single-phase symmetric multi-level inverter (MLI) topology using lesser number of power electronic switches. The comprehensive study of the proposed inverter has been done through a specimen nine-level inverter. Level-shifted pulse width modulation (LS-PWM) technique is applied to produce the corresponding gate pulses. Modeling and simulation of the proposed inverter are done using MATLAB/Simulink. The proposed structure of the nine-level inverter is experimentally executed in the laboratory to validate the simulation outcomes. Moreover, a comparative study of the recommended configuration of the multi-level inverter is done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stala, R.: A natural DC-link voltage balancing of diode-clamped inverters in parallel systems. IEEE Trans. Ind. Electron. 60, 5008–5018 (2013). https://doi.org/10.1109/TIE.2012.2219839

    Article  Google Scholar 

  2. Manjrekar, M.D., Steimer, P.K., Lipo, T.A.: Hybrid multilevel power conversion system: a competitive solution for high-power applications. IEEE Trans. Ind. Appl. 36, 834–841 (2000). https://doi.org/10.1109/28.845059

  3. Alonso, R., Román, E., Sanz, A., Martínez Santos, V.E., Ibáñez, P.: Analysis of inverter-voltage influence on distributed MPPT architecture performance. IEEE Trans. Ind. Electron. 59, 3900–3907 (2012). https://doi.org/10.1109/TIE.2012.2189532

    Article  Google Scholar 

  4. Abdul Kadir, M.N., Mekhilef, S., Ping, H.W.: Voltage vector control of a hybrid three-stage 18-level inverter by vector decomposition. IET Power Electron. 3, 601 (2010). https://doi.org/10.1049/iet-pel.2009.0085

    Article  Google Scholar 

  5. Tolbert, L.M., Peng, F.Z.: Multilevel converters as a utility interface for renewable energy systems. 00, 1271–1274 (2002). https://doi.org/10.1109/pess.2000.867569

  6. Nabae, A., Takahashi, I., Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. IA-17, 518–523 (1981). https://doi.org/10.1109/TIA.1981.4503992

  7. Meynard, T.A., Foch, H.: Multi-level Conversion: High Voltage Choppers and Voltage-Source Inverters, pp. 397–403 (2003). https://doi.org/10.1109/pesc.1992.254717

  8. McMurray, W.: Fast response stepped-wave switching power converter circuit. United States Pat. (1971)

    Google Scholar 

  9. Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57, 2197–2206 (2010). https://doi.org/10.1109/TIE.2009.2030767

    Article  Google Scholar 

  10. Babaei, E.: A cascade multilevel converter topology with reduced number of switches. Power Electron. IEEE Trans. 23, 2657–2664 (2008). https://doi.org/10.1109/TPEL.2008.2005192

    Article  Google Scholar 

  11. Babaei, E., Laali, S.: A multilevel inverter with reduced power switches. Arab. J. Sci. Eng. 41, 3605–3617 (2016). https://doi.org/10.1007/s13369-016-2217-0

    Article  Google Scholar 

  12. Choi, U., Lee, K., Blaabjerg, F.: Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems. IEEE Trans. Ind. Appl. 50, 495–508 (2014)

    Article  Google Scholar 

  13. Raushan, R., Mahato, B., Jana, K.C.: Comprehensive analysis of a novel three-phase multilevel inverter with minimum number of switches. IET Power Electron. 9, 1600–1607 (2016). https://doi.org/10.1049/iet-pel.2015.0682

    Article  Google Scholar 

  14. Raushan, R., Mahato, B., Jana, K.C.: Optimum structure of a generalized three-phase reduced switch multilevel inverter. Electr. Power Syst. Res. 157, 10–19 (2018). https://doi.org/10.1016/j.epsr.2017.11.017

    Article  Google Scholar 

  15. Raushan, R., Mahato, B., Jana, K.C.: Operation and control of three-phase multilevel inverter with reduced component. 2016 3rd Int. Conf. Recent Adv. Inf. Technol. RAIT 2016. 2, 295–299 (2016). https://doi.org/10.1016/j.epsr.2017.11.017

  16. Vahedi, H., Trabelsi, M.: Single-DC-source multilevel inverters. Springer International Publishing, Switzerland AG (2019). https://doi.org/10.1007/978-3-030-15253-6

  17. McGrath, B.P., Holmes, D.G.: Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49, 858–867 (2002). https://doi.org/10.1109/TIE.2002.801073

    Article  Google Scholar 

  18. Rathore, A.K., Holtz, J., Boller, T.: Generalized optimal pulsewidth modulation of multilevel inverters for low-switching-frequency control of medium-voltage high-power industrial AC drives. IEEE Trans. Ind. Electron. 60, 4215–4224 (2013). https://doi.org/10.1109/TIE.2012.2217717

    Article  Google Scholar 

  19. Hosseini Aghdam, G.: Optimised active harmonic elimination technique for three-level T-type inverters. IET Power Electron. 6, 425–433 (2013). https://doi.org/10.1049/iet-pel.2012.0492

    Article  Google Scholar 

  20. Lou, H., Mao, C., Wang, D., Lu, J., Wang, L.: Fundamental modulation strategy with selective harmonic elimination for multilevel inverters. IET Power Electron. 7, 2173–2181 (2014). https://doi.org/10.1049/iet-pel.2013.0347

    Article  Google Scholar 

  21. Jana, K.C., Biswas, S.K.: Generalised switching scheme for a space vector pulse-width modulation-based N-level inverter with reduced switching frequency and harmonics. IET Power Electron. 8, 2377–2385 (2015). https://doi.org/10.1049/iet-pel.2015.0101

    Article  Google Scholar 

  22. Meshram, P., Borghate, V.: A simplified nearest level control (NLC) voltage balancing method for modular multilevel converter (MMC). IEEE Trans. Power Electron. 8993, 1–1 (2014). https://doi.org/10.1109/TPEL.2014.2317705

    Article  Google Scholar 

  23. Gui-Jia, S.: Multilevel DC-link inverter. Ind. Appl. IEEE Trans. 41, 848–854 (2005). https://doi.org/10.1109/TIA.2005.847306

    Article  Google Scholar 

  24. Choi, W.K., Kang, F.S.: H-bridge based multilevel inverter using PWM switching function. INTELEC, Int. Telecommun. Energy Conf. (2009). https://doi.org/10.1109/INTLEC.2009.5351886

  25. Heidari Yazdi, S.S., Jabbarvaziri, F., Niknam Kumle, A., Jamshidi, M., Fathi, S.H.: Application of memetic algorithm for selective harmonic elimination in multi-level inverters. IET Power Electron. 8, 1733–1739 (2015). https://doi.org/10.1049/iet-pel.2014.0209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar Singh .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

The list of components along with their detailed specification used for the experimental setup of the recommended nine-level inverter is presented in Table 3.

Table 3 Specifications of devices used for designing the laboratory prototype of the recommended nine-level inverter

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Raushan, R., Gauri, P. (2020). A Single-Phase Multi-level Inverter Using a Lesser Number of Switching Devices. In: Pant, M., Kumar Sharma, T., Arya, R., Sahana, B., Zolfagharinia, H. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1154. Springer, Singapore. https://doi.org/10.1007/978-981-15-4032-5_13

Download citation

Publish with us

Policies and ethics