Skip to main content

Improved Performance of Visual Concept Detection in Images Using Bagging Approach with Support Vector Machines

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1148))

Included in the following conference series:

  • 722 Accesses

Abstract

With rapid advances in imaging devices and internet, millions of images are uploaded on the internet without much information about the image. An efficient method is necessary for detecting the concept of the desired image from this vast collection of images. In this paper, Support Vector Machine (SVM) based architecture is presented to detect concept of a given input image. To enhance the performance of proposed system, a bagging approach is implemented. Color moments, HSV Color Histogram, Grey level co-occurrence matrix, Wavelet Transform and Edge orientation histogram are used for image representation purpose. These low-level feature descriptors are used to train multiple SVM models. The final concept of the query image is obtained by voting from outputs of these multiple models. The proposed system is evaluated on Wang’s Corel 10K. Results of proposed system indicate its improved performance over existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foschi, P.G., Kolippakkam, D., Liu, H., Mandvikar, A.: Feature extraction for image mining. In: Proceedings of International Workshop on Multimedia Information System, pp. 103–1099 (2002)

    Google Scholar 

  2. Tang, S., Zheng, Y.-T., Cao, G., Zhang, Y.D., Li, J.T.: Ensemble learning with LDA topic models for visual concept detection. In: Multimedia A Multidisciplinary Approach to Complex Issues, pp. 175–200 (2012)

    Google Scholar 

  3. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

  4. Jiang, W., Zavesky, E., Chang, S.-F., Loui, A.: Cross-domain learning methods for high-level visual concept classification. In: ICIP, pp. 161–164 (2008)

    Google Scholar 

  5. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Trans. Neural Netw. 10, 1055–1064 (1999)

    Article  Google Scholar 

  6. Shi, R., Feng, H., Chua, T.-S., Lee, C.-H.: An adaptive image content representation and segmentation approach to automatic image annotation. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 545–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27814-6_64

    Chapter  Google Scholar 

  7. Cusano, C., Ciocca, G., Schettin, R.: Image annotation using SVM. In: Proceedings of the Internet Imaging IV, vol. 5304. SPIE (2004)

    Google Scholar 

  8. Goh, K.S., Chang, E.Y., Li, B.: Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans. Knowl. Data Eng. 17(10), 1333–1346 (2005)

    Article  Google Scholar 

  9. Qi, X., Han, Y.: Incorporating multiple SVMs for automatic image annotation. Pattern Recognit. 40(2), 728–741 (2007)

    Article  Google Scholar 

  10. Thai, H., Hai, T.S., Thuy, N.T.: Image classification using support vector machine and artificial neural network. Int. J. Inf. Technol. Comput. Sci. 4(5), 32–38 (2012)

    Google Scholar 

  11. Tian, D.: Support vector machine for automatic image annotation. Int. J. Hybrid Inf. Technol. 8(11), 435–446 (2015)

    Google Scholar 

  12. Laib, L., Ait-Aoudia, S.: Efficient approach for content based image retrieval using multiple SVM in CBIR. Comput. Sci. Inf. Technol. (2016)

    Google Scholar 

  13. Janwe, N.J., Bhoyar, K.K.: Semantic video concept detection using novel mixed-hybrid-fusion approach for multi-label data. Electron. Lett. Comput. Vis. Image Anal. 16(3), 14–29 (2017)

    Article  Google Scholar 

  14. Smeulders, W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  15. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1075–1088 (2003)

    Article  Google Scholar 

  16. Sangamnerkar, G.V., Bhoyar, K.K.: A neural network color classifier in HSV color space. In: International Conference on Industrial Automation and Computing (2014)

    Google Scholar 

  17. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  18. Park, D.K., Jeon, Y.S., Won, C.S., Park, S.J.: Efficient use of local edge histogram descriptor. In: Proceedings of ACM International workshop on Standards, Interoperability and Practices, Marina del Rey, California, USA, pp. 52–54 (2000)

    Google Scholar 

  19. De Marsico, M., Riccio, D.: A new data normalization function for multibiometric contexts: a case study. In: Campilho, A., Kamel, M. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 1033–1040. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69812-8_103

    Chapter  Google Scholar 

  20. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. BJU Int. 101(1), 1396–1400 (2008)

    Google Scholar 

  21. Ben-Hur, A., Weston, J.: A user’s guide to support vector machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. Humana Press, Totowa (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay M. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patil, S.M., Bhoyar, K.K. (2020). Improved Performance of Visual Concept Detection in Images Using Bagging Approach with Support Vector Machines. In: Nain, N., Vipparthi, S., Raman, B. (eds) Computer Vision and Image Processing. CVIP 2019. Communications in Computer and Information Science, vol 1148. Springer, Singapore. https://doi.org/10.1007/978-981-15-4018-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4018-9_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4017-2

  • Online ISBN: 978-981-15-4018-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics