Skip to main content

Deformation-Compensated Averaging for Deep-Tissue LED and Laser Diode-Based Photoacoustic Imaging Integrated with Handheld Echo Ultrasound

  • Chapter
  • First Online:
LED-Based Photoacoustic Imaging

Abstract

Averaging is a fundamental necessity for deep photoacoustic (PA) imaging when using low-energy pulsed laser sources or LED’s. Intrinsic (breathing, heartbeat…) or extrinsic (freehand probe guidance) tissue motion, however, leads to phase cancellation of the averaged PA signal when the axial displacement of tissue becomes larger than half the acoustic wavelength at the probe’s centre frequency. Motion-compensated averaging (DCA) is a solution to this problem, and allows the detection of deep structures that are else not visible. In a combined PA and echo-ultrasound (US) system, tissue motion can be quantified in US images that are interleaved with PA images. In this chapter, we exemplarily illustrate the power of this technique when trying to image the optical absorption inside the carotid artery, using a fully integrated PA/US system based on a handheld clinical probe containing a miniaturised laser source. The key components of DCA are discussed and exemplified on volunteer data, and the influence of various parameters on image contrast is investigated. We demonstrate that DCA enables freehand PA detection of blood vessels at a depth of 1.5 cm using only 2 mJ pulse energy, and give some guidelines for image interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, M. Frenz, Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE Trans. Med. Imaging 24(4), 436–440 (2005). https://doi.org/10.1109/TMI.2004.843199

    Article  Google Scholar 

  2. M.K.A. Singh, W. Steenbergen, S. Manohar, Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging, in Frontiers in Biophotonics for Translational Medicine (Springer, Singapore, 2016), pp. 209–247

    Google Scholar 

  3. J.-L. Gennisson, T. Deffieux, M. Fink, M. Tanter, Ultrasound elastography: principles and techniques. Diagn. Interv. Imaging 94, 487–495 (2013). https://doi.org/10.1016/j.diii.2013.01.022

    Article  Google Scholar 

  4. M. Jaeger, G. Held, S. Peeters, S. Preisser, M. Grünig, M. Frenz, Computed ultrasound tomography in echo mode for imaging speed of sound using pulse-echo sonography: proof of principle. Ult. Med. Biol. 41(1), 235–250 (2015). https://doi.org/10.1016/j.ultrasmedbio.2014.05.019

    Article  Google Scholar 

  5. M. Jaeger, M. Frenz, Towards clinical computed ultrasound tomography in echo-mode: dynamic range artefact reduction. Ultrasonics 62, 299–304 (2015). https://doi.org/10.1016/j.ultras.2015.06.003

    Article  Google Scholar 

  6. M. Jaeger, E. Robinson, H.G. Akarcay, M. Frenz, Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering. Phys. Med. Biol. 60, 4497–4515 (2015). https://doi.org/10.1088/0031-9155/60/11/4497

    Article  Google Scholar 

  7. P. Stähli, M. Kuriakose, M. Frenz, M. Jaeger, Forward Model for Quantitative Pulse-Echo Speed-of-Sound Imaging. arXiv: 1902.10639v2 [physics.med-ph]

    Google Scholar 

  8. M. Imbault, M.D. Burgio, A. Faccinetto, M. Ronot, H. Bendjador, T. Deffieux et al., Ultrasonic fat fraction quantification using in vivo adaptive sound speed estimation. Phys. Med. Biol. 63, 215013 (2018). https://doi.org/10.1088/1361-6560/aae661

  9. A. Hariri, J. Lemaster, J. Wang, A.S. Jeevarathinam, D.L. Chao, J.V. Jokerst, The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9, 10–20 (2018). https://doi.org/10.1016/j.pacs.2017.11.001

    Article  Google Scholar 

  10. A. Hariri, E. Zhao, A.S. Jeevarathinam, J. Lemaster, J. Zhang, J.V. Jokerst, Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Sci. Rep. 9, 11378–11410 (2019). https://doi.org/10.1117/12.2509204

    Article  ADS  Google Scholar 

  11. J. Jo, G. Xu, Y. Zhu, M. Burton, J. Sarazin, E. Schiopu et al., Detecting joint inflammation by an LED-based photoacoustic imaging system: a feasibility study. J. Biomed. Opt. 23(11), 110501 (2018). https://doi.org/10.1117/1.JBO.23.11.110501

  12. W. Xia, M.K.A. Singh, E. Maneas, N. Sato, Y. Shigeta, T. Agano et al., Handheld real-time LED-based photoacoustic and ultrasound imaging system for accurate visualization of clinical metal needles and superficial vasculature to guide minimally invasive procedures. Sensors 18, 1394 (2018). https://doi.org/10.3390/s18051394

  13. Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci et al., Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci. Rep. 8, 9885 (2018). https://doi.org/10.1038/s41598-018-28131-4

  14. K. Daoudi, P.J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, W. Steenbergen, Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging. Opt. Express 22(21), 26365–26374 (2014). https://doi.org/10.1364/OE.22.026365

    Article  ADS  Google Scholar 

  15. A. Fatima, K. Kratkiewicz, R. Manwar, M. Zafar, R. Zhang, B. Huang et al., Review of cost reduction methods in photoacoustic computed tomography. Photoacoustics15, 100137 (2019). https://doi.org/10.1016/j.pacs.2019.100137

  16. M. Erfanzadeh, Q. Zhu, Photoacoustic imaging with low-cost sources: a review. Photoacoustics 14, 1–11 (2019). https://doi.org/10.1016/j.pacs.2019.01.004

    Article  Google Scholar 

  17. K. Sivasubramanian, M. Pramanik, High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed. Opt. Exp. 7(2), 312–323 (2016). https://doi.org/10.1364/BOE.7.000312

  18. M. Jaeger, L. Siegenthaler, M. Kitz, M. Frenz, Reduction of background in optoacoustic image sequences obtained under tissue deformation. J. Biomed. Opt. 14(5), 054011. https://doi.org/10.1117/1.3227038

  19. M. Jaeger, S. Preisser, M. Kitz, D. Ferrara, S. Senegas, D. Schweizer, M. Frenz, Improved contrast deep optoacoustic imaging using displacement-compensated averaging: breast tumour phantom studies. Phys. Med. Biol. 56, 5889–5901 (2011). https://doi.org/10.1088/0031-9155/56/18/008

    Article  Google Scholar 

  20. M. Jaeger, D.C. Harris-Birtill, A. Gertsch, E. O'Flynn, J. Bamber, Deformation compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo. J. Biomed. Opt. 17(6), 066007 (2012). https://doi.org/10.1117/1.JBO.17.6.066007

  21. M. Jaeger, K. Gashi, H.G. Akarcay, G. Held, S. Peeters, T. Petrosyan et al., Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging. Photonics Lasers Med. 3(4), 343–349 (2014). https://doi.org/10.1515/plm-2014-0028

  22. M. Jaeger, J.C. Bamber, M. Frenz, Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT). Photoacoustics 1, 19–29 (2013). https://doi.org/10.1016/j.pacs.2013.07.002

    Article  Google Scholar 

  23. T. Petrosyan, M. Theodorou, J. Bamber, M. Frenz, M. Jaeger, Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using LOVIT. Photoacoustics 10, 20–30 (2018). https://doi.org/10.1016/j.pacs.2018.02.001

    Article  Google Scholar 

  24. M.K.A. Singh, M. Jaeger, M. Frenz, W. Steenbergen, Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach. Biomed. Opt. Exp. 8(4), 2245–2260 (2017). https://doi.org/10.1364/BOE.8.002245

    Article  Google Scholar 

  25. M.K.A. Singh, M. Jaeger, M. Frenz, W. Steenbergen, In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion). Biomed. Opt. Exp. 7(8), 2955–2972 (2016). https://doi.org/10.1364/BOE.7.002955

    Article  Google Scholar 

  26. M.K.A. Singh, W. Steenbergen, Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging. Photoacoustics 3(4), 123–131 (2015). https://doi.org/10.1016/j.pacs.2015.09.001

    Article  Google Scholar 

  27. H.-M. Schwab, M.F. Beckmann, G. Schmitz, Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements. Biomed. Opt. Exp. 7, 1468–1478 (2016). https://doi.org/10.1364/BOE.7.001468

    Article  Google Scholar 

  28. G. Held, S. Preisser, H.G. Akarcay, S. Peeters, M. Frenz, Effect of irradiation distance on image contrast in epi-optoacoustic imaging of human volunteers. Biomed. Opt. Exp. 5(11), 3765–3780 (2014). https://doi.org/10.1364/BOE.5.003765

    Article  Google Scholar 

  29. S. Preisser, G. Held, H.G. Akarcay, M. Jaeger, M. Frenz, Study of clutter origin in in-vivo epi-optoacoustic imaging of human forearms. J. Opt. 18, 094003–94009 (2016). https://doi.org/10.1088/2040-8978/18/9/094003

    Article  ADS  Google Scholar 

  30. M. Tanter, M. Fink, Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ult. Ferr. Freq. Cont. 61(1), 102–119 (2014). https://doi.org/10.1109/TUFFC.2014.6689779

    Article  Google Scholar 

  31. G. Montaldo, M. Tanter, J. Bercoff, N. Benech, M. Fink, Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE. Trans. Ult. Ferr. Freq. Cont. 56(3), 489–506 (2009). https://doi.org/10.1109/TUFFC.2009.1067

    Article  Google Scholar 

  32. S. Freeman, P.-C. Li, M. O’Donnell, Retrospective dynamic transmit focusing. Ult. Imag. 17, 173–196 (1995). https://doi.org/10.1006/uimg.1995.1008

    Article  Google Scholar 

  33. T. Loupas, J.T. Powers, R.W. Gill, An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach. IEEE Trans. Ult. Ferr. Freq. Cont. 42(4), 672–688 (1995). https://doi.org/10.1109/58.393110

    Article  Google Scholar 

  34. M. O’Donnell, A.R. Skovoroda, B.M. Shapo, S.Y. Emelianov, Internal displacement and strain imaging using ultrasonic speckle tracking IEEE Trans. Ult. Ferr. Freq. Cont 41(3), 314–325 (1994). https://doi.org/10.1109/58.285465

    Article  Google Scholar 

  35. E. Konofagou, J. Ophir, A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and poisson’s ratios in tissues. Ult. Med. Biol. 24(8), 1183–1199 (1998). https://doi.org/10.1016/s0301-5629(98)00109-4

    Article  Google Scholar 

  36. P. Chaturvedi, M.F. Insana, T.J. Hall, 2-D companding for noise reduction in strain imaging. IEEE Trans. Ult. Ferr. Freq. Cont. 45(1) (1998). https://doi.org/10.1109/58.646923

  37. W.-N. Lee, C.M. Ingrassia, S.D. Fung-Kee-Fung, K.D. Costa, J.W. Holmes, E.E. Konofagou, Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE Trans. Ult. Ferr. Freq. Cont. 54(11), 2233–2245 (2007). https://doi.org/10.1109/TUFFC.2007.528

    Article  Google Scholar 

  38. E. Weinstein, A.J. Weiss, Fundamental limitations in passive time-delay estimation—part II: wide-band systems. IEEE Trans. Acoust. Speech Signal Process 32(5), 1064–1078 (1984). https://doi.org/10.1109/TASSP.1984.1164429

    Article  Google Scholar 

  39. M.A. Lubinski, S.Y. Emelianov, M. O’Donnell, Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans. Ult. Ferr. Freq. Cont. 46(1), 82–96 (1999). https://doi.org/10.1109/58.741427

    Article  Google Scholar 

  40. T. Shiina, N. Nitta, E. Ueno, E., J.C. Bamber, Real time tissue elasticity imaging using the combined autocorrelation method. J. Med. Ult. 26(2), 57–66. https://doi.org/10.1007/BF02481234

  41. G. Diot, S. Metz, A. Noske, E. Liapsis, B. Schroeder, S.V. Ovsepian et al., Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23(22), 6912–6922. https://doi.org/10.1158/1078-0432.CCR-16-3200

  42. A. Dima, V. Ntziachristos, Non-invasive carotid imaging using optoacoustic tomography. Opt. Express 20(22), 25044–25057 (2012). https://doi.org/10.1364/OE.20.025044

    Article  ADS  Google Scholar 

  43. X.L. Dean-Ben, D. Razansky, Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photoacoustics 1, 68–73 (2013). https://doi.org/10.1016/j.pacs.2013.10.002

    Article  Google Scholar 

  44. K.G. Held, M. Jaeger, J. Ricka, M. Frenz, H.G. Akarcay, Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging. Photoacoustics 4(2), 70–80 (2016). https://doi.org/10.1016/j.pacs.2016.05.004

    Article  Google Scholar 

  45. M.U. Arabul, M. Heres, M.C.M. Rutten, M.R. van Sambeek, F.N. van de Vosse, R.G.P. Lopata, Toward the detection of intraplaque hemorrhage in carotid artery lesions using photoacoustic imaging. J. Biomed. Opt. 22(4), 041010 (2017). https://doi.org/10.1117/1.JBO.22.4.041010

  46. M.E. Anderson, Multi-dimensional velocity estimation with ultrasound using spatial quadrature. IEEE Trans. Ult. Ferr. Freq. Cont. 45(3), 852–861 (1998). https://doi.org/10.1109/58.677757

    Article  Google Scholar 

  47. L. Chen, G.M. Treece, J.E. Lindop, A.H. Gee, R.W. Prager, A quality-guided displacement tracking algorithm for ultrasonic elasticity imaging. Med. Imag. Anal. 13(2), 286–296 (2009). https://doi.org/10.1016/j.media.2008.10.007

    Article  Google Scholar 

  48. Y. Petrank, L. Huang, M. O’Donnell, Reduced peak-hopping artifacts in ultrasonic strain estimation using the Viterbi algorithm IEEE Trans. Ult. Ferr. Freq. Cont. 56(7), 1359–1367 (2009). https://doi.org/10.1109/TUFFC.2009.1192

    Article  Google Scholar 

  49. H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, G. Hager, Ulstrasoundelastography: a dynamic programming approach. IEEE Trans. Med. Imaging 27(10) (2008). https://doi.org/10.1109/TMI.2008.917243

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 731771, Photonics Private Public Partnership, and is supported by the Swiss State Secretariat for Education, Research asnd Innovation (SERI) under contract number 16.0160. The opinions expressed and arguments employed herein do not necessarily reflect the official view of the Swiss Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Frenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaeger, M. et al. (2020). Deformation-Compensated Averaging for Deep-Tissue LED and Laser Diode-Based Photoacoustic Imaging Integrated with Handheld Echo Ultrasound. In: Kuniyil Ajith Singh, M. (eds) LED-Based Photoacoustic Imaging . Progress in Optical Science and Photonics, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-3984-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3984-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3983-1

  • Online ISBN: 978-981-15-3984-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics