Skip to main content

LED-Based Functional Photoacoustics—Portable and Affordable Solution for Preclinical Cancer Imaging

Part of the Progress in Optical Science and Photonics book series (POSP,volume 7)

Abstract

Photoacoustic imaging (PAI) is an imaging modality with promising results in cancer theranostics, both in preclinical and clinical applications. Its applicability in image-guided drug delivery and monitoring therapeutic response holds great promise for clinical translation. Current PAI techniques rely on using bulky lasers to provide the nanosecond pulsed light for photoacoustic signal generation. Tremendous growth in semiconductor industry within the last decade has led to creation of low-cost powerful LEDs that can be used as an alternate light source in lieu of laser to generate photoacoustic signal. In this chapter, we provide an overview of PAI usage in preclinical cancer research and provide examples of the LED based PAI performance in similar settings. LEDs will play a major role in catapulting PAI into clinics at an earlier pace and low cost than expected.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019)

    CrossRef  Google Scholar 

  2. A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K.H. Plate, H.G. Augustin, Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60(5), 1388–1393 (2000)

    Google Scholar 

  3. M. Hockel, P. Vaupel, Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93(4), 266–276 (2001)

    CrossRef  Google Scholar 

  4. J.L. Tatum, G.J. Kelloff, R.J. Gillies, J.M. Arbeit, J.M. Brown, K.S. Chao, J.D. Chapman, W.C. Eckelman, A.W. Fyles, A.J. Giaccia, R.P. Hill, C.J. Koch, M.C. Krishna, K.A. Krohn, J.S. Lewis, R.P. Mason, G. Melillo, A.R. Padhani, G. Powis, J.G. Rajendran, R. Reba, S.P. Robinson, G.L. Semenza, H.M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, D. Sullivan, Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int. J. Radiat. Biol. 82(10), 699–757 (2006)

    CrossRef  Google Scholar 

  5. R.R. Hallac, H. Zhou, R. Pidikiti, K. Song, S. Stojadinovic, D. Zhao, T. Solberg, P. Peschke, R.P. Mason, Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn. Reson. Med. 71(5), 1863–1873 (2014)

    CrossRef  Google Scholar 

  6. T. Stylianopoulos, J.D. Martin, M. Snuderl, F. Mpekris, S.R. Jain, R.K. Jain, Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73(13), 3833–3841 (2013)

    CrossRef  Google Scholar 

  7. S. Garattini, I. Fuso Nerini, M. D’Incalci, Not only tumor but also therapy heterogeneity. Ann. Oncol. 29(1), 13–19 (2018)

    Google Scholar 

  8. L.J. Rich, M. Seshadri, Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci. Rep. 6, 21237 (2016)

    CrossRef  ADS  Google Scholar 

  9. H. Zhou, S. Chiguru, R.R. Hallac, D. Yang, G. Hao, P. Peschke, R.P. Mason, Examining correlations of oxygen sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in rat prostate tumors. Am. J. Nucl. Med. Mol. Imaging 9(2), 156–167 (2019)

    Google Scholar 

  10. M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4) (2006)

    Google Scholar 

  11. V. Ntziachristos, D. Razansky, Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110(5), 2783–2794 (2010)

    CrossRef  Google Scholar 

  12. S. Mallidi, G.P. Luke, S. Emelianov, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29(5), 213–221 (2011)

    CrossRef  Google Scholar 

  13. K.S. Valluru, J.K. Willmann, Clinical photoacoustic imaging of cancer. Ultrasonography 35(4), 267–280 (2016)

    CrossRef  Google Scholar 

  14. S. Zackrisson, S.M.W.Y. van de Ven, S.S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging. Can. Res. 74(4), 979–1004 (2014)

    CrossRef  Google Scholar 

  15. J.A. Guggenheim, T.J. Allen, A. Plumb, E.Z. Zhang, M. Rodriguez-Justo, S. Punwani, P.C. Beard, Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast. J. Biomed. Opt. 20(5), 50504 (2015)

    CrossRef  Google Scholar 

  16. S. Gigan, Optical microscopy aims deep. Nat. Photonics 11(1), 14–16 (2017)

    CrossRef  ADS  Google Scholar 

  17. S. Wang, I.V. Larina, High-resolution imaging techniques in tissue engineering, in Monitoring and Evaluation of Biomaterials and Their Performance In Vivo (2017), pp. 151–180

    Google Scholar 

  18. S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, T. Hasan, Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5(3), 289–301 (2015)

    CrossRef  Google Scholar 

  19. M. Kuniyil Ajith Singh, W. Steenbergen, S. Manohar, Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging, in Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics (2016), pp. 209–247

    Google Scholar 

  20. A. Hariri, J. Lemaster, J. Wang, A.S. Jeevarathinam, D.L. Chao, J.V. Jokerst, The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9, 10–20 (2018)

    CrossRef  Google Scholar 

  21. N. Sato, T. Agano, T. Hanaoka, Y. Shigeta, M. Kuniyil Ajith Singh, High-speed photoacoustic imaging using an LED-based photoacoustic imaging system. Paper presented at the photons plus ultrasound: imaging and sensing 2018

    Google Scholar 

  22. Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, X. Wang, Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci. Rep. 8(1), 9885 (2018)

    CrossRef  ADS  Google Scholar 

  23. M.R. Tomaszewski, M. Gehrung, J. Joseph, I. Quiros-Gonzalez, J.A. Disselhorst, S.E. Bohndiek, Oxygen-enhanced and dynamic contrast-enhanced optoacoustic tomography provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. Cancer Res. 78(20), 5980–5991

    Google Scholar 

  24. M.R. Tomaszewski, I.Q. Gonzalez, J.P. O’Connor, O. Abeyakoon, G.J. Parker, K.J. Williams, F.J. Gilbert, S.E. Bohndiek, Oxygen Enhanced Optoacoustic tomography (OE-OT) reveals vascular dynamics in Murine models of prostate cancer. Theranostics 7(11), 2900–2913 (2017)

    CrossRef  Google Scholar 

  25. A.L. Maas, S.L. Carter, E.P. Wileyto, J. Miller, M. Yuan, G. Yu, A.C. Durham, T.M. Busch, Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Can. Res. 72(8), 2079–2088 (2012)

    CrossRef  Google Scholar 

  26. K.E. Wilson, S.V. Bachawal, L. Tian, J.K. Willmann, Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model. Theranostics 4(11), 1062–1071 (2014)

    CrossRef  Google Scholar 

  27. L. Lin, P. Hu, J. Shi, C.M. Appleton, K. Maslov, L. Li, R. Zhang, L.V. Wang, Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 9(1), 2352 (2018)

    CrossRef  ADS  Google Scholar 

  28. T.T.W. Wong, R. Zhang, P. Hai, C. Zhang, M.A. Pleitez, R.L. Aft, D.V. Novack, L.V. Wang, Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3(5), e1602168 (2017)

    CrossRef  ADS  Google Scholar 

  29. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, M. Frenz, Fourier reconstruction in optoacoustic imaging using truncated regularized inversek-space interpolation. Inverse Prob. 23(6), S51–S63 (2007)

    CrossRef  ADS  MATH  Google Scholar 

  30. A. Hussain, W. Petersen, J. Staley, E. Hondebrink, W. Steenbergen, Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Opt. Lett. 41(8), 1720–1723 (2016)

    CrossRef  ADS  Google Scholar 

  31. W. Xia, E. Maneas, N. Trung Huynh, M. Kuniyil Ajith Singh, N. Montaña Brown, S. Ourselin, E. Gilbert-Kawai, S.J. West, A.E. Desjardins, A.A. Oraevsky, L.V. Wang, Imaging of human peripheral blood vessels during cuff occlusion with a compact LED-based photoacoustic and ultrasound system. Paper presented at the photons plus ultrasound: imaging and sensing 2019

    Google Scholar 

  32. M. Kuniyil Ajith Singh, N. Sato, F. Ichihashi, Y. Sankai, In vivo demonstration of real-time oxygen saturation imaging using a portable and affordable LED-based multispectral photoacoustic and ultrasound imaging system. Paper presented at the photons plus ultrasound: imaging and sensing 2019

    Google Scholar 

  33. J. Weber, P.C. Beard, S.E. Bohndiek, Contrast agents for molecular photoacoustic imaging. Nat. Methods 13(8), 639–650 (2016)

    CrossRef  Google Scholar 

  34. E. Hysi, L.A. Wirtzfeld, J.P. May, E. Undzys, S.D. Li, M.C. Kolios, Photoacoustic signal characterization of cancer treatment response: correlation with changes in tumor oxygenation. Photoacoustics 5, 25–35 (2017)

    CrossRef  Google Scholar 

  35. J.C. Chen, L. Keltner, J. Christophersen, F. Zheng, M.R. Krouse, A. Singhal, S. Wang, New technology for deep light distribution in tissue for phototherapy. Cancer J. 8(2), 154–163 (2002)

    CrossRef  Google Scholar 

  36. S. Mallidi, S. Anbil, A.L. Bulin, G. Obaid, M. Ichikawa, T. Hasan, Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6(13), 2458–2487 (2016)

    CrossRef  Google Scholar 

  37. L.B. Josefsen, R.W. Boyle, Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 276109 (2008)

    CrossRef  Google Scholar 

  38. H. Kobayashi, R. Watanabe, P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1), 81–89 (2013)

    CrossRef  Google Scholar 

  39. D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003)

    Google Scholar 

  40. J. You, R. Zhang, G. Zhang, M. Zhong, Y. Liu, C.S. Van Pelt, D. Liang, W. Wei, A.K. Sood, C. Li, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Controlled Release: Official Journal of the Controlled Release Society 158(2), 319–328 (2012)

    CrossRef  Google Scholar 

  41. H. Wang, J. Yu, X. Lu, X. He, Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine (Lond.) 11(2), 103–106 (2016)

    CrossRef  Google Scholar 

  42. G. Obaid, S. Bano, S. Mallidi, M. Broekgaarden, J. Kuriakose, Z. Silber, A.-L. Bulin, Y. Wang, Z. Mai, W. Jin, D. Simeone, T. Hasan, Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia? Nano Lett. (2019)

    Google Scholar 

  43. C. Moore, F. Chen, J. Wang, J.V. Jokerst, Listening for the therapeutic window: advances in drug delivery utilizing photoacoustic imaging. Adv. Drug Deliv. Rev. 144, 78–89 (2019)

    CrossRef  Google Scholar 

  44. L. Cui, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 9(2), e1418 (2017)

    CrossRef  Google Scholar 

  45. D. Cui, C. Xie, K. Pu, Development of semiconducting polymer nanoparticles for photoacoustic imaging. Macromol. Rapid Commun. 38(12) (2017)

    Google Scholar 

  46. B. Yameen, W.I. Choi, C. Vilos, A. Swami, J. Shi, O.C. Farokhzad, Insight into nanoparticle cellular uptake and intracellular targeting. J. Controlled Release: Official Journal of the Controlled Release Society 190, 485–499 (2014)

    CrossRef  Google Scholar 

  47. P. Foroozandeh, A.A. Aziz, Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13(1), 339 (2018)

    CrossRef  ADS  Google Scholar 

  48. Y. Liu, S. Chen, J. Sun, S. Zhu, C. Chen, W. Xie, J. Zheng, Y. Zhu, L. Xiao, L. Hao, Z. Wang, S. Chang, Folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles for dual-mode imaging and photo-sonodynamic/photothermal therapy of ovarian cancer in vitro and in vivo. Mol. Pharm. (2019)

    Google Scholar 

  49. C. Moore, J.V. Jokerst, Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging. Theranostics 9(6), 1550–1571 (2019)

    CrossRef  Google Scholar 

  50. J. Xia, C. Kim, J.F. Lovell, Opportunities for photoacoustic-guided drug delivery. Curr. Drug. Targets 16(6), 571–581 (2015)

    CrossRef  Google Scholar 

  51. Y. Zhang, J. Yu, A.R. Kahkoska, Z. Gu, Photoacoustic drug delivery. Sensors (Basel) 17(6) (2017)

    Google Scholar 

  52. W. Li, X. Chen, Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond.) 10(2), 299–320 (2015)

    CrossRef  Google Scholar 

  53. K. Yang, Y. Liu, Y. Wang, Q. Ren, H. Guo, J.B. Matson, X. Chen, Z. Nie, Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 223, 119460 (2019)

    CrossRef  Google Scholar 

  54. J.-W. Kim, E.I. Galanzha, E.V. Shashkov, H.-M. Moon, V.P. Zharov, Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4(10), 688–694 (2009)

    CrossRef  ADS  Google Scholar 

  55. L. Meng, X. Zhang, Q. Lu, Z. Fei, P.J. Dyson, Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6), 1689–1698 (2012)

    CrossRef  Google Scholar 

  56. B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65(15), 1964–2015 (2013)

    CrossRef  Google Scholar 

  57. J. Liu, C. Wang, X. Wang, X. Wang, L. Cheng, Y. Li, Z. Liu, Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Func. Mater. 25(3), 384–392 (2015)

    CrossRef  Google Scholar 

  58. L. Xie, G. Wang, H. Zhou, F. Zhang, Z. Guo, C. Liu, X. Zhang, L. Zhu, Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103, 219–228 (2016)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funds from NIH R41CA221420, NIH EY028839 and School of Engineering, Tufts University. The authors would also like to thank Christopher D. Nguyen for editing our book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srivalleesha Mallidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xavierselvan, M., Mallidi, S. (2020). LED-Based Functional Photoacoustics—Portable and Affordable Solution for Preclinical Cancer Imaging. In: Kuniyil Ajith Singh, M. (eds) LED-Based Photoacoustic Imaging . Progress in Optical Science and Photonics, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-3984-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3984-8_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3983-1

  • Online ISBN: 978-981-15-3984-8

  • eBook Packages: EngineeringEngineering (R0)