Abstract
Photoacoustic imaging (PAI) is an imaging modality with promising results in cancer theranostics, both in preclinical and clinical applications. Its applicability in image-guided drug delivery and monitoring therapeutic response holds great promise for clinical translation. Current PAI techniques rely on using bulky lasers to provide the nanosecond pulsed light for photoacoustic signal generation. Tremendous growth in semiconductor industry within the last decade has led to creation of low-cost powerful LEDs that can be used as an alternate light source in lieu of laser to generate photoacoustic signal. In this chapter, we provide an overview of PAI usage in preclinical cancer research and provide examples of the LED based PAI performance in similar settings. LEDs will play a major role in catapulting PAI into clinics at an earlier pace and low cost than expected.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019)
A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K.H. Plate, H.G. Augustin, Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60(5), 1388–1393 (2000)
M. Hockel, P. Vaupel, Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 93(4), 266–276 (2001)
J.L. Tatum, G.J. Kelloff, R.J. Gillies, J.M. Arbeit, J.M. Brown, K.S. Chao, J.D. Chapman, W.C. Eckelman, A.W. Fyles, A.J. Giaccia, R.P. Hill, C.J. Koch, M.C. Krishna, K.A. Krohn, J.S. Lewis, R.P. Mason, G. Melillo, A.R. Padhani, G. Powis, J.G. Rajendran, R. Reba, S.P. Robinson, G.L. Semenza, H.M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone, D. Sullivan, Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int. J. Radiat. Biol. 82(10), 699–757 (2006)
R.R. Hallac, H. Zhou, R. Pidikiti, K. Song, S. Stojadinovic, D. Zhao, T. Solberg, P. Peschke, R.P. Mason, Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response. Magn. Reson. Med. 71(5), 1863–1873 (2014)
T. Stylianopoulos, J.D. Martin, M. Snuderl, F. Mpekris, S.R. Jain, R.K. Jain, Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73(13), 3833–3841 (2013)
S. Garattini, I. Fuso Nerini, M. D’Incalci, Not only tumor but also therapy heterogeneity. Ann. Oncol. 29(1), 13–19 (2018)
L.J. Rich, M. Seshadri, Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci. Rep. 6, 21237 (2016)
H. Zhou, S. Chiguru, R.R. Hallac, D. Yang, G. Hao, P. Peschke, R.P. Mason, Examining correlations of oxygen sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in rat prostate tumors. Am. J. Nucl. Med. Mol. Imaging 9(2), 156–167 (2019)
M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4) (2006)
V. Ntziachristos, D. Razansky, Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110(5), 2783–2794 (2010)
S. Mallidi, G.P. Luke, S. Emelianov, Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 29(5), 213–221 (2011)
K.S. Valluru, J.K. Willmann, Clinical photoacoustic imaging of cancer. Ultrasonography 35(4), 267–280 (2016)
S. Zackrisson, S.M.W.Y. van de Ven, S.S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging. Can. Res. 74(4), 979–1004 (2014)
J.A. Guggenheim, T.J. Allen, A. Plumb, E.Z. Zhang, M. Rodriguez-Justo, S. Punwani, P.C. Beard, Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast. J. Biomed. Opt. 20(5), 50504 (2015)
S. Gigan, Optical microscopy aims deep. Nat. Photonics 11(1), 14–16 (2017)
S. Wang, I.V. Larina, High-resolution imaging techniques in tissue engineering, in Monitoring and Evaluation of Biomaterials and Their Performance In Vivo (2017), pp. 151–180
S. Mallidi, K. Watanabe, D. Timerman, D. Schoenfeld, T. Hasan, Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5(3), 289–301 (2015)
M. Kuniyil Ajith Singh, W. Steenbergen, S. Manohar, Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging, in Frontiers in Biophotonics for Translational Medicine. Progress in Optical Science and Photonics (2016), pp. 209–247
A. Hariri, J. Lemaster, J. Wang, A.S. Jeevarathinam, D.L. Chao, J.V. Jokerst, The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9, 10–20 (2018)
N. Sato, T. Agano, T. Hanaoka, Y. Shigeta, M. Kuniyil Ajith Singh, High-speed photoacoustic imaging using an LED-based photoacoustic imaging system. Paper presented at the photons plus ultrasound: imaging and sensing 2018
Y. Zhu, G. Xu, J. Yuan, J. Jo, G. Gandikota, H. Demirci, T. Agano, N. Sato, Y. Shigeta, X. Wang, Light emitting diodes based photoacoustic imaging and potential clinical applications. Sci. Rep. 8(1), 9885 (2018)
M.R. Tomaszewski, M. Gehrung, J. Joseph, I. Quiros-Gonzalez, J.A. Disselhorst, S.E. Bohndiek, Oxygen-enhanced and dynamic contrast-enhanced optoacoustic tomography provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. Cancer Res. 78(20), 5980–5991
M.R. Tomaszewski, I.Q. Gonzalez, J.P. O’Connor, O. Abeyakoon, G.J. Parker, K.J. Williams, F.J. Gilbert, S.E. Bohndiek, Oxygen Enhanced Optoacoustic tomography (OE-OT) reveals vascular dynamics in Murine models of prostate cancer. Theranostics 7(11), 2900–2913 (2017)
A.L. Maas, S.L. Carter, E.P. Wileyto, J. Miller, M. Yuan, G. Yu, A.C. Durham, T.M. Busch, Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Can. Res. 72(8), 2079–2088 (2012)
K.E. Wilson, S.V. Bachawal, L. Tian, J.K. Willmann, Multiparametric spectroscopic photoacoustic imaging of breast cancer development in a transgenic mouse model. Theranostics 4(11), 1062–1071 (2014)
L. Lin, P. Hu, J. Shi, C.M. Appleton, K. Maslov, L. Li, R. Zhang, L.V. Wang, Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 9(1), 2352 (2018)
T.T.W. Wong, R. Zhang, P. Hai, C. Zhang, M.A. Pleitez, R.L. Aft, D.V. Novack, L.V. Wang, Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3(5), e1602168 (2017)
M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, M. Frenz, Fourier reconstruction in optoacoustic imaging using truncated regularized inversek-space interpolation. Inverse Prob. 23(6), S51–S63 (2007)
A. Hussain, W. Petersen, J. Staley, E. Hondebrink, W. Steenbergen, Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Opt. Lett. 41(8), 1720–1723 (2016)
W. Xia, E. Maneas, N. Trung Huynh, M. Kuniyil Ajith Singh, N. Montaña Brown, S. Ourselin, E. Gilbert-Kawai, S.J. West, A.E. Desjardins, A.A. Oraevsky, L.V. Wang, Imaging of human peripheral blood vessels during cuff occlusion with a compact LED-based photoacoustic and ultrasound system. Paper presented at the photons plus ultrasound: imaging and sensing 2019
M. Kuniyil Ajith Singh, N. Sato, F. Ichihashi, Y. Sankai, In vivo demonstration of real-time oxygen saturation imaging using a portable and affordable LED-based multispectral photoacoustic and ultrasound imaging system. Paper presented at the photons plus ultrasound: imaging and sensing 2019
J. Weber, P.C. Beard, S.E. Bohndiek, Contrast agents for molecular photoacoustic imaging. Nat. Methods 13(8), 639–650 (2016)
E. Hysi, L.A. Wirtzfeld, J.P. May, E. Undzys, S.D. Li, M.C. Kolios, Photoacoustic signal characterization of cancer treatment response: correlation with changes in tumor oxygenation. Photoacoustics 5, 25–35 (2017)
J.C. Chen, L. Keltner, J. Christophersen, F. Zheng, M.R. Krouse, A. Singhal, S. Wang, New technology for deep light distribution in tissue for phototherapy. Cancer J. 8(2), 154–163 (2002)
S. Mallidi, S. Anbil, A.L. Bulin, G. Obaid, M. Ichikawa, T. Hasan, Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6(13), 2458–2487 (2016)
L.B. Josefsen, R.W. Boyle, Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 276109 (2008)
H. Kobayashi, R. Watanabe, P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1), 81–89 (2013)
D.E.J.G.J. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer. Nat. Rev. Cancer 3(5), 380–387 (2003)
J. You, R. Zhang, G. Zhang, M. Zhong, Y. Liu, C.S. Van Pelt, D. Liang, W. Wei, A.K. Sood, C. Li, Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J. Controlled Release: Official Journal of the Controlled Release Society 158(2), 319–328 (2012)
H. Wang, J. Yu, X. Lu, X. He, Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine (Lond.) 11(2), 103–106 (2016)
G. Obaid, S. Bano, S. Mallidi, M. Broekgaarden, J. Kuriakose, Z. Silber, A.-L. Bulin, Y. Wang, Z. Mai, W. Jin, D. Simeone, T. Hasan, Impacting pancreatic cancer therapy in heterotypic in vitro organoids and in vivo tumors with specificity-tuned, NIR-activable photoimmunonanoconjugates: towards conquering desmoplasia? Nano Lett. (2019)
C. Moore, F. Chen, J. Wang, J.V. Jokerst, Listening for the therapeutic window: advances in drug delivery utilizing photoacoustic imaging. Adv. Drug Deliv. Rev. 144, 78–89 (2019)
L. Cui, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 9(2), e1418 (2017)
D. Cui, C. Xie, K. Pu, Development of semiconducting polymer nanoparticles for photoacoustic imaging. Macromol. Rapid Commun. 38(12) (2017)
B. Yameen, W.I. Choi, C. Vilos, A. Swami, J. Shi, O.C. Farokhzad, Insight into nanoparticle cellular uptake and intracellular targeting. J. Controlled Release: Official Journal of the Controlled Release Society 190, 485–499 (2014)
P. Foroozandeh, A.A. Aziz, Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13(1), 339 (2018)
Y. Liu, S. Chen, J. Sun, S. Zhu, C. Chen, W. Xie, J. Zheng, Y. Zhu, L. Xiao, L. Hao, Z. Wang, S. Chang, Folate-targeted and oxygen/indocyanine green-loaded lipid nanoparticles for dual-mode imaging and photo-sonodynamic/photothermal therapy of ovarian cancer in vitro and in vivo. Mol. Pharm. (2019)
C. Moore, J.V. Jokerst, Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging. Theranostics 9(6), 1550–1571 (2019)
J. Xia, C. Kim, J.F. Lovell, Opportunities for photoacoustic-guided drug delivery. Curr. Drug. Targets 16(6), 571–581 (2015)
Y. Zhang, J. Yu, A.R. Kahkoska, Z. Gu, Photoacoustic drug delivery. Sensors (Basel) 17(6) (2017)
W. Li, X. Chen, Gold nanoparticles for photoacoustic imaging. Nanomedicine (Lond.) 10(2), 299–320 (2015)
K. Yang, Y. Liu, Y. Wang, Q. Ren, H. Guo, J.B. Matson, X. Chen, Z. Nie, Enzyme-induced in vivo assembly of gold nanoparticles for imaging-guided synergistic chemo-photothermal therapy of tumor. Biomaterials 223, 119460 (2019)
J.-W. Kim, E.I. Galanzha, E.V. Shashkov, H.-M. Moon, V.P. Zharov, Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 4(10), 688–694 (2009)
L. Meng, X. Zhang, Q. Lu, Z. Fei, P.J. Dyson, Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33(6), 1689–1698 (2012)
B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65(15), 1964–2015 (2013)
J. Liu, C. Wang, X. Wang, X. Wang, L. Cheng, Y. Li, Z. Liu, Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Func. Mater. 25(3), 384–392 (2015)
L. Xie, G. Wang, H. Zhou, F. Zhang, Z. Guo, C. Liu, X. Zhang, L. Zhu, Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103, 219–228 (2016)
Acknowledgements
The authors gratefully acknowledge funds from NIH R41CA221420, NIH EY028839 and School of Engineering, Tufts University. The authors would also like to thank Christopher D. Nguyen for editing our book chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Xavierselvan, M., Mallidi, S. (2020). LED-Based Functional Photoacoustics—Portable and Affordable Solution for Preclinical Cancer Imaging. In: Kuniyil Ajith Singh, M. (eds) LED-Based Photoacoustic Imaging . Progress in Optical Science and Photonics, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-3984-8_12
Download citation
DOI: https://doi.org/10.1007/978-981-15-3984-8_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3983-1
Online ISBN: 978-981-15-3984-8
eBook Packages: EngineeringEngineering (R0)