Abstract
The safety and efficacy of drugs are the key issues in clinical treatment. Classical pharmacogenomics cannot fully explain the individual differences of drug responses. Pertinent studies indicate that intestinal microorganisms are significantly associated with the efficacy, toxicity, and adverse responses of various drugs. The Human Microbiome Project (HMP) has initiated the research of pharmacomicrobiomics, which mainly studies the interplay between drugs and microorganisms, involving drug absorption and metabolism, transport, microbial metabolites, immune regulation, ectopic and migration, etc. The pharmacomicrobiomics is an important extension and supplement of pharmacogenomics. Due to the infancy of pharmacomicrobiomics, it is urgent to clarify the relationship between human microbiome and rational drug use in clinic, which may be an important supplement to the classical pharmacogenomics. It is of great significance to put the research of pharmacomicrobiomics in the main position to fully explain the individual differences in drug responses.
Keywords
- Gut microbiota
- Pharmacomicrobiomics
- Pharmacokinetics
- Pharmacodynamics
- Personalized medicine
This is a preview of subscription content, access via your institution.
Buying options


References
Doestzada M, Vila AV, Zhernakova A et al (2018) Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell 9(5):432–445
Sun YZ, Zhang DH, Cai SB et al (2018) MDAD: a special resource for microbe-drug associations. Front Cell Infect Mi 8:424. https://doi.org/10.3389/fcimb.2018.00424
Panebianco C, Andriulli A, Pazienza V (2018) Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6:92. https://doi.org/10.1186/s40168-40018-40483-40167
ElRakaiby M, Dutilh BE, Rizkallah MR et al (2014) Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS 18(7):402–414
Vazquez-Baeza Y, Callewaert C, Debelius J et al (2018) Impacts of the human gut microbiome on therapeutics. Annu Rev Pharmacol 58:253–270
Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM (2018) Microbiota-drug interactions: impact on metabolism and efficacy of therapeutics. Maturitas 112:53–63
Saad R, Rizkallah MR, Aziz RK (2012) Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 4:16. https://doi.org/10.1186/1757-4749-1184-1116
Ejtahed HS, Hasani-Ranjbar S, Larijani B (2017) Human microbiome as an approach to personalized medicine. Altern Ther Health Med 23(6):8–9
Aziz RK, Hegazy SM, Yasser R et al (2018) Drug pharmacomicrobiomics and toxicomicrobiomics: from scattered reports to systematic studies of drug-microbiome interactions. Expert Opin Drug Met 14(10):1043–1055
Rizkallah MR, Saad R, Aziz RK (2010) The human microbiome project, personalized medicine and the birth of pharmacomicrobiomics. Curr Pharmacogenom Personal Med 8:182–193
Hornung B, dos Santos VAPM, Smidt H et al (2018) Studying microbial functionality within the gut ecosystem by systems biology. Genes Nutr 13:5. https://doi.org/10.1186/s12263-12018-10594-12266
Hadrich D (2018) Microbiome research is becoming the key to better understanding health and nutrition. Front Genet 9:212. https://doi.org/10.3389/fgene.2018.00212
Belizario JE, Napolitano M (2015) Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol 6:20. https://doi.org/10.1186/1476-1069X-1186-1120
Ewald DR, Sumner SCJ (2018) Human microbiota, blood group antigens, and disease. Wires Syst Biol Med 10(3):e1413. https://doi.org/10.1002/wsbm.1413
Almeida A, Mitchell AL, Boland M et al (2019) A new genomic blueprint of the human gut microbiota. Nature 568(7753):499–504
Choquet H, Meyre D (2010) Genomic insights into early-onset obesity. Genome Med 2:36. https://doi.org/10.1186/gm1157
Goodman AL, Kallstrom G, Faith JJ et al (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. P Natl Acad Sci USA 108(15):6252–6257
Serino M, Blasco-Baque V, Burcelin R (2012) Microbes on-air gut and tissue microbiota as targets in type 2 diabetes. J Clin Gastroenterol 46(9):S27–S28
Nicholson JK, Everett JR, Lindon JC (2012) Longitudinal pharmacometabonomics for predicting patient responses to therapy: drug metabolism, toxicity and efficacy. Expert Opin Drug Metab Toxicol 8(2):135–139
Balasopoulou A, Patrinos GP, Katsila T (2016) Pharmacometabolomics informs viromics toward precision medicine. Front Pharmacol 7:411. https://doi.org/10.3389/fphar.2016.00411
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R et al (2019) Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570(7762):462–467
Ma C, Han M, Heinrich B et al (2018) Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360(6391):eaan5931. https://doi.org/10.1126/science.aan5931
Dietert RR, Dietert JM (2015) The microbiome and sustainable healthcare. Healthcare (Basel) 3(1):100–129
Snijders AM, Langley SA, Kim YM et al (2016) Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat Microbiol 2:16221
Zhernakova DV, Le TH, Kurilshikov A et al (2018) Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat Genet 50(11):1524–1532
Bouter KE, van Raalte DH, Groen AK et al (2017) Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 152(7):1671–1678
Lloyd-Price J, Mahurkar A, Rahnavard G et al (2017) Strains, functions and dynamics in the expanded human microbiome project. Nature 550(7674):61–66
Cussotto S, Clarke G, Dinan TG (2019) Psychotropics and the microbiome: a chamber of secrets… . Psychopharmacology 236(5):1411–1432
Aagaard K, Ma J, Antony KM et al (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237–265
Claesson MJ, Cusack S, O’Sullivan O et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108:4586–4591
Liu L, Tabung FK, Zhang XH et al (2018) Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain fusobacterium nucleatum. Clin Gastroenterol Hepatol 16(10):1622–1631. https://doi.org/10.1016/j.cgh.2018.1604.1030
David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563
Nogueira T, David PHC, Pothier J (2019) Antibiotics as both friends and foes of the human gut microbiome: the microbial community approach. Drug Develop Res 80(1):86–97
Chen MY, Shao L, Zhang W et al (2018) Metabolic analysis of Panax notoginseng saponins with gut microbiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS. J Pharm Biomed Anal 150:199–207
Giuliano V, Bassotti G, Mourvaki E et al (2010) Small intestinal bacterial overgrowth and warfarin dose requirement variability. Thromb Res 126(1):12–17
Aziz RK (2018) Interview with Prof. Ramy K. Aziz, Cairo University. The dawn of pharmacomicrobiomics. OMICS 22(4):295–297
Peppercorn MA, Goldman P (1972) The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther 181(3):555–562
Yoo DH, Kim IS, Van Le TK et al (2014) Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos 42(9):1508–1513
Matuskova Z, Anzenbacher P, Vecera R et al (2017) Effect of lactobacillus casei on the pharmacokinetics of amiodarone in male Wistar rats. Eur J Drug Metab Pharmacokinet 42(1):29–36
Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1–2):39–50
Yan AW, Fouts DE, Brandl J et al (2011) Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53(1):96–105
Clark NP, Delate T, Riggs CS et al (2014) Warfarin interactions with antibiotics in the ambulatory care setting. JAMA Intern Med 174(3):409–416
Haiser JH, Gootenberg BG, Chatman K (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium eggerthella lenta. Science:295–298
Wu B, Chen M, Gao Y et al (2019) In vivo pharmacodynamic and pharmacokinetic effects of metformin mediated by the gut microbiota in rats. Life Sci 226:185–192
Vétizou M, Pitt JM, Daillère R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084
Routy B, Chatelier EL, Derosa L et al (2018) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359:91–97
Stein A, Voigt W, Jordan K (2010) Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther Adv Med Oncol 2(1):51–63
Higuchi K, Umegaki E, Watanabe T et al (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44(9):879–888
Yip LY, Aw CC, Lee SH et al (2018) The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 67(1):282–295
Bubnov RV, Babenko LP, Lazarenko LM et al (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9(2):205–223
Coskunpinar E, Islamzade F, Yilmaz EP et al (2018) The importance of fecal transplantation in personalized medicine. Bezmialem Sci 6(4):305–311
Abdollahi-Roodsaz S, Abramson SB, Scher JU (2016) The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions. Nat Rev Rheumatol 12(8):446–455
Tsigalou C, Stavropoulou E, Bezirtzoglou E (2018) Current insights in microbiome shifts in Sjogren’s syndrome and possible therapeutic interventions. Front Immunol 9:1106. https://doi.org/10.3389/fimmu.2018.01106
Suwal S, Wu Q, Liu WL et al (2018) The probiotic effectiveness in preventing experimental colitis is correlated with host gut microbiota. Front Microbiol 9:2675. https://doi.org/10.3389/fmicb.2018.02675
Rinninella E, Raoul P, Cintoni M et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. https://doi.org/10.3390/microorganisms7010014
Rinninella E, Mele MC, Merendino N et al (2018) The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: new perspectives from the gut-retina axis. Nutrients 10(11):1677. https://doi.org/10.3390/nu10111677
Ju TT, Shoblak Y, Gao YH et al (2017) Initial gut microbial composition as a key factor driving host response to antibiotic treatment, as exemplified by the presence or absence of commensal Escherichia coli. Appl Environ Microb 83(17):e01107–e01117
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Huang, W., Zhang, W. (2020). Pharmacomicrobiomics. In: Cai, W., Liu, Z., Miao, L., Xiang, X. (eds) Pharmacogenomics in Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-3895-7_10
Download citation
DOI: https://doi.org/10.1007/978-981-15-3895-7_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3894-0
Online ISBN: 978-981-15-3895-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)