Advertisement

Appendix

Chapter
  • 206 Downloads

Abstract

In this chapter, several basic concepts of conic integral geometry theory are introduced. We begin with the kinematic formula for cones which is the probability that a randomly rotated convex cone shares a ray with a fixed convex cone. This formula plays a vital role in characterizing the success or failure probability of an estimation problem.

References

  1. 1.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  2. 2.
    Amelunxen, D., Bürgisser, P.: Intrinsic volumes of symmetric cones and applications in convex programming. Math. Program. 149(1–2), 105–130 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amelunxen, D., Lotz, M., McCoy, M.B., Tropp, J.A.: Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dong, J., Shi, Y.: Nonconvex demixing from bilinear measurements. IEEE Trans. Signal Process. 66(19), 5152–5166 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dong, J., Shi, Y.: Blind demixing via Wirtinger flow with random initialization. In: The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 89, pp. 362–370 (2019)Google Scholar
  7. 7.
    Dong, J., Yang, K., Shi, Y.: Blind demixing for low-latency communication. IEEE Trans. Wireless Commun. 18(2), 897–911 (2019)CrossRefGoogle Scholar
  8. 8.
    Dopico, F.M.: A note on sin θ theorems for singular subspace variations. BIT Numer. Math. 40(2), 395–403 (2000)CrossRefGoogle Scholar
  9. 9.
    Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry, vol. 150. Springer, Berlin (2013)zbMATHGoogle Scholar
  10. 10.
    Fan, J., Wang, D., Wang, K., Zhu, Z., et al.: Distributed estimation of principal eigenspaces. Ann. Stat. 47(6), 3009–3031 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hartshorne, R.: Algebraic Geometry, vol. 52. Springer, Berlin (2013)zbMATHGoogle Scholar
  12. 12.
    Ling, S., Strohmer, T.: Regularized gradient descent: a nonconvex recipe for fast joint blind deconvolution and demixing. Inf. Inference J. IMA 8(1), 1–49 (2018)zbMATHGoogle Scholar
  13. 13.
    Ma, C., Wang, K., Chi, Y., Chen, Y.: Implicit regularization in nonconvex statistical estimation: gradient descent converges linearly for phase retrieval, matrix completion and blind deconvolution. arXiv preprint:1711.10467 (2017)Google Scholar
  14. 14.
    Matsumura, H.: Commutative Ring Theory, vol. 8. Cambridge University, Cambridge (1989)zbMATHGoogle Scholar
  15. 15.
    McCoy, M., Tropp, J.: Sharp recovery bounds for convex demixing, with applications. Found. Comput. Math. 14(3), 503–567 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mishra, B., Meyer, G., Bonnabel, S., Sepulchre, R.: Fixed-rank matrix factorizations and Riemannian low-rank optimization. Comput. Stat. 29(3–4), 591–621 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rudelson, M., Vershynin, R.: On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory 151. Cambridge University, Cambridge (2014)zbMATHGoogle Scholar
  19. 19.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)CrossRefGoogle Scholar
  20. 20.
    Tsakiris, M.C., Peng, L., Conca, A., Kneip, L., Shi, Y., Choi, H.: An algebraic-geometric approach to shuffled linear regression. arXiv preprint:1810.05440 (2018)Google Scholar
  21. 21.
    Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Compressed Sensing, Theory and Applications, pp. 210–268 (2010)Google Scholar
  22. 22.
    Yatawatta, S.: On the interpolation of calibration solutions obtained in radio interferometry. Mon. Not. R. Astron. Soc. 428(1), 828–833 (2013)CrossRefGoogle Scholar
  23. 23.
    Yatawatta, S.: Radio interferometric calibration using a Riemannian manifold. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3866–3870. IEEE, Piscataway (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Information Science and TechnologyShanghai Tech UniversityShanghaiChina
  2. 2.School of Information Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Department of Electronic & Information EngineeringHong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations