Abstract
Ultrasound-guided renal biopsy is one of the most widely applicable diagnostic methods. The procedure involved ultrasound scanning of the lesion area and sampling using a puncture needle. The success rate of sampling depends largely on the accuracy of needle placement and requires a high degree of skill on the part of the operator. In this paper, we describe a visual puncture guidance system designed to increase the accuracy of needle puncture. Our solution is based on the Vuforia engine, which tracks the location of the puncture needle and ultrasonic probe in space. Our system can reduce the difficulty of puncture by providing an intuitive way to display the visual track. The operator’s field of view is enhanced on the screen, thus exercising 3D vision and eliminating the need to consult external monitors. Based on this prototype, our goal is to develop a complete system, reduce the training cost, and improve the overall precision of puncture, to improve the success rate of sampling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van Oosterom, M.N., Van Der Poel, H.G., Navab, N., Van De Velde, C.J.H., Van Leeuwen, F.W.B.: Computer-assisted surgery: Virtual- and augmented-reality displays for navigation during urological interventions. Curr. Opin. Urol. 28, 205–213 (2018)
Wilhelm, D., Marahrens, N.: Enhanced visualization: from intraoperative tissue differentiation to augmented reality. Visceral Med. (2018). https://doi.org/10.1159/000485940
Eliodoro, F., Giulia, F., Domiziana, S., Giacomo, L., Francesco, G.R.: Percutaneous low-dose CT-guided lung biopsy with an augmented reality navigation system: validation of the technique on 496 suspected lesions ☆. Clin. Imaging 49, 101–105 (2018)
Tang, R., Ma, L.F., Rong, Z.X., Li, M.D., Zeng, J.P., Wang, X.D., Liao, H.E., Dong, J.H.: Augmented reality technology for preoperative planning and intraoperative navigation during hepatobiliary surgery: a review of current methods. Hepatobil. Pancr. Dis. Int. 17(02):101–112
Muthuppalaniappan, V.M., Blunden, M.J.: Renal biopsy. Medicine (United Kingdom) (2015). https://doi.org/10.1016/j.mpmed.2015.04.013
Chan, W., Xiaoqiong, W., Xianba, L., Shengzao, L., Chimeng, H.: Influencing factors of nosocomial infection in patients undergoing percutaneous renal biopsy under CT guidance. Chinese J. Nosocomiol. 11, 1669–1672 (2019)
Hospital, J.C.: Diagnostic value and safety of ultrasound-guided percutaneous. Renal Biopsy Nephrop, 10–13 (2019)
Sato, Y., Nakamoto, M., Tamaki, Y., Sasama, T.: Image Guidance of Breast Cancer Surgery Using 3-D Ultrasound Images and Augmented Reality Visualization 17, 681–693 (1998)
Sharma, K., Virmani, J.: A decision support system for classification of normal and medical renal disease using ultrasound images: a decision support system for medical renal diseases. Int. J. Ambient Comput. Intell. 8, 52–69 (2017)
Kotyk, T., Dey, N., Ashour, A.S., Balas-Timar, D., Chakraborty, S., Ashour, A.S.: Measurement of glomerulus diameter and Bowman’s space width of renal albino rats. Comput. Methods Programs Biomed. 126, 143–153 (2016)
Alkhammash, E., Mohamed, W.S., Ashour, A.S., Dey, N.: Designing ontology for association between water quality and kidney diseases for medical decision support system. In: VI International Conference Industrial Engineering and Environmental Protection IIZS, Zrenjanin, Serbia (2016)
VuforiaTM API Reference https://library.vuforia.com/content/vuforia-library/en/reference/unity/index.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Guo, Z., Yu, H., Qin, Z., Xiao, W., Shen, Y., Lai, M. (2020). Augmented Reality Guidance System for Ultrasound-Guided Puncture Surgery Training. In: Kountchev, R., Patnaik, S., Shi, J., Favorskaya, M. (eds) Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology. Smart Innovation, Systems and Technologies, vol 180. Springer, Singapore. https://doi.org/10.1007/978-981-15-3867-4_28
Download citation
DOI: https://doi.org/10.1007/978-981-15-3867-4_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-3866-7
Online ISBN: 978-981-15-3867-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)