Skip to main content

Cascaded Operation of Hybrid Multilevel Inverter with Optimum Switching Angle Control for Power Quality Enhancement

  • Conference paper
  • First Online:
Microelectronics, Electromagnetics and Telecommunications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 655))

Abstract

Hybrid multilevel inverters (MLI) are popular for high-voltage and high-power applications with a reduced number of devices, for the purpose of cost optimization, ease of design, control, and maintenance. The minimum total harmonic distortion (THD) levels indicate power quality improvement to the maximum level. THD can be minimized by optimum switching angle control. In this paper, two 19-level hybrid multilevel inverters are cascaded to produce output voltage of 37 levels with optimum switching angle control for enhancing the power quality by reducing the THD. The system is simulated in MATLAB/Simulink. The THD of simulated output of is compared with the calculated values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though the model is simulated for 1100 V peak output voltage, the THD depends on the shape and pattern of the output voltage. The voltage should be close to the sinusoidal waveform. Low THD indicates good power quality and closeness to sinusoidal wave shape.

References

  1. Leon M, Tolbert TG (1999) Novel multilevel inverter carrier-based PWM method. IEEE Trans Ind Appl 35(5):1097–1107

    Google Scholar 

  2. Rai SK, She-Pwm PC (2016) Based multilevel T-Type inverter topology for single-phase photovoltaic applications. In: IEEE international conference on power electronics, drives and energy, pp 1–4

    Google Scholar 

  3. Espinosa CAL, Portocarrero I, Izquierdo M (2012) Minimization of THD and angle calculation for multilevel inverters. Int J Eng Technol IJET-IJENS 12:83–86. 1211905-8282-IJET-IJENS 05

    Google Scholar 

  4. Jammala VR, Yellasiri S (2018) Development of new hybrid multilevel inverter using modified carrier SPWM switching strategy. IEEE Trans Power Electron 33(10):8192–8197

    Google Scholar 

  5. Prasad H, Rao RK, Optimum switching angles for multilevel inverters for minimization of THD. In: IEEE international conference on intelligent systems and green technology (ICISGT-2019), Visakhapatnam, India

    Google Scholar 

  6. IEEE Recommended practice and requirements for harmonic control in electric power systems. IEEE 519â„¢-(2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hejeebu Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prasad, H., Kameswara Rao, R., Kranthi Kumar, S. (2021). Cascaded Operation of Hybrid Multilevel Inverter with Optimum Switching Angle Control for Power Quality Enhancement. In: Chowdary, P., Chakravarthy, V., Anguera, J., Satapathy, S., Bhateja, V. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-15-3828-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3828-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3827-8

  • Online ISBN: 978-981-15-3828-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics