Skip to main content

Noninvasive Recording of Cardiac Autonomic Nervous Activity: What Is Behind ECG?

  • Chapter
  • First Online:
Feature Engineering and Computational Intelligence in ECG Monitoring
  • 638 Accesses

Abstract

The autonomic nervous system, which is divided into the sympathetic nervous system and the parasympathetic nervous system, takes part in various physiological processes. The assessment of autonomic nervous activity is necessary for disease diagnosis and risk stratification for patients. Noninvasive testing approaches based on ECG, such as heart rate variability, heart rate turbulence, baroreflex sensitivity, and skin sympathetic nerve activity, are briefly introduced in this chapter to enlighten broader applications of these physiological signals in clinical work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCorry, L.K.: Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78 (2007). https://doi.org/10.5688/aj710478

    Article  PubMed  PubMed Central  Google Scholar 

  2. Herring, N., Kalla, M., Paterson, D.J.: The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol. 16, 707–726 (2019). https://doi.org/10.1038/s41569-019-0221-2

    Article  PubMed  Google Scholar 

  3. Goldberger, J.J., Arora, R., Buckley, U., Shivkumar, K.: Autonomic nervous system dysfunction: JACC focus seminar. J. Am. Coll. Cardiol. 73, 1189–1206 (2019). https://doi.org/10.1016/j.jacc.2018.12.064

    Article  PubMed  PubMed Central  Google Scholar 

  4. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93, 1043–1065 (1996). https://doi.org/10.1161/01.Cir.93.5.1043

    Article  Google Scholar 

  5. Hon, E.H., Lee, S.T.: Electronic evaluation of the fetal heart rate. VIII. Patterns preceding fetal death, further observations. Am. J. Obstet. Gynecol. 87, 814–826 (1963)

    Article  CAS  Google Scholar 

  6. Ewing, D.J., Martyn, C.N., Young, R.J., Clarke, B.F.: The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 8, 491–498 (1985). https://doi.org/10.2337/diacare.8.5.491

    Article  CAS  PubMed  Google Scholar 

  7. Odemuyiwa, O., et al.: Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am. J. Cardiol. 68, 434–439 (1991). https://doi.org/10.1016/0002-9149(91)90774-f

    Article  CAS  PubMed  Google Scholar 

  8. Jarczok, M.N., Koenig, J., Wittling, A., Fischer, J.E., Thayer, J.F.: First evaluation of an index of low vagally-mediated heart rate variability as a marker of health risks in human adults: proof of concept. J. Clin. Med. 8, E1940 (2019). https://doi.org/10.3390/jcm8111940

    Article  CAS  PubMed  Google Scholar 

  9. Hayano, J., Yuda, E.: Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38, 3 (2019). https://doi.org/10.1186/s40101-019-0193-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schmidt, G., et al.: Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 353, 1390–1396 (1999). https://doi.org/10.1016/s0140-6736(98)08428-1

    Article  CAS  PubMed  Google Scholar 

  11. Patel, V.N., et al.: Association of Holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC Heart Fail. 5, 423–431 (2017). https://doi.org/10.1016/j.jchf.2016.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  12. Makimoto, H., et al.: Reduced heart rate response after premature ventricular contraction depending on severity of atrial fibrillation symptoms - analysis on heart rate turbulence in atrial fibrillation patients. Int. J. Cardiol. Heart Vasc. 18, 33–38 (2018). https://doi.org/10.1016/j.ijcha.2018.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jansen, C., et al.: Severe abnormal Heart Rate Turbulence Onset is associated with deterioration of liver cirrhosis. PLoS One. 13, e0195631 (2018). https://doi.org/10.1371/journal.pone.0195631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poliwczak, A.R., Waszczykowska, E., Dziankowska-Bartkowiak, B., Kozirog, M., Dworniak, K.: The use of heart rate turbulence and heart rate variability in the assessment of autonomic regulation and circadian rhythm in patients with systemic lupus erythematosus without apparent heart disease. Lupus. 27, 436–444 (2018). https://doi.org/10.1177/0961203317725590

    Article  CAS  PubMed  Google Scholar 

  15. La Rovere, M.T., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity. J. Cardiovasc. Electrophysiol. 6, 761–774 (1995). https://doi.org/10.1111/j.1540-8167.1995.tb00452.x

    Article  PubMed  Google Scholar 

  16. La Rovere, M.T., Pinna, G.D., Raczak, G.: Baroreflex sensitivity: measurement and clinical implications. Ann. Noninvasive Electrocardiol. 13, 191–207 (2008). https://doi.org/10.1111/j.1542-474X.2008.00219.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rovere, M.T.L., Bigger, J.T., Marcus, F.I., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 351, 478–484 (1998). https://doi.org/10.1016/s0140-6736(97)11144-8

    Article  PubMed  Google Scholar 

  18. Pinna, G.D., et al.: Applicability and clinical relevance of the transfer function method in the assessment of baroreflex sensitivity in heart failure patients. J. Am. Coll. Cardiol. 46, 1314–1321 (2005). https://doi.org/10.1016/j.jacc.2005.06.062

    Article  PubMed  Google Scholar 

  19. Mortara, A., et al.: Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 96, 3450–3458 (1997). https://doi.org/10.1161/01.cir.96.10.3450

    Article  CAS  PubMed  Google Scholar 

  20. Li, H., et al.: Baroreflex sensitivity predicts short-term outcome of postural tachycardia syndrome in children. PLoS One. 11, e0167525 (2016). https://doi.org/10.1371/journal.pone.0167525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subramanian, S.K., Sharma, V.K., Arunachalam, V., Rajendran, R., Gaur, A.: Comparison of baroreflex sensitivity and cardiac autonomic function between adolescent athlete and non-athlete boys - a cross-sectional study. Front. Physiol. 10, 1043 (2019). https://doi.org/10.3389/fphys.2019.01043

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jiang, Z., et al.: Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs. Heart Rhythm. 12, 1324–1332 (2015). https://doi.org/10.1016/j.hrthm.2015.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doytchinova, A., et al.: Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm. 14, 25–33 (2017). https://doi.org/10.1016/j.hrthm.2016.09.019

    Article  PubMed  Google Scholar 

  24. Kumar, A., et al.: Skin sympathetic nerve activity as a biomarker for syncopal episodes during a tilt table test. Heart Rhythm. (2019) (in press). https://doi.org/10.1016/j.hrthm.2019.10.008

  25. Liu, X., et al.: Effects of anesthetic and sedative agents on sympathetic nerve activity. Heart Rhythm. 16, 1875–1882 (2019). https://doi.org/10.1016/j.hrthm.2019.06.017

    Article  PubMed  Google Scholar 

  26. Yuan, Y., et al.: Left cervical vagal nerve stimulation reduces skin sympathetic nerve activity in patients with drug resistant epilepsy. Heart Rhythm. 14, 1771–1778 (2017). https://doi.org/10.1016/j.hrthm.2017.07.035

    Article  PubMed  PubMed Central  Google Scholar 

  27. Uradu, A., et al.: Skin sympathetic nerve activity precedes the onset and termination of paroxysmal atrial tachycardia and fibrillation. Heart Rhythm. 14, 964–971 (2017). https://doi.org/10.1016/j.hrthm.2017.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kusayama, T. et al. Skin sympathetic nerve activity and ventricular rate control during atrial fibrillation. Heart Rhythm. 17, 544–552 (2020). https://doi.org/10.1016/j.hrthm.2019.11.017

  29. Zhang, P., et al.: Characterization of skin sympathetic nerve activity in patients with cardiomyopathy and ventricular arrhythmia. Heart Rhythm. 16, 1669–1675 (2019). https://doi.org/10.1016/j.hrthm.2019.06.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Cui or Minglong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Cui, C., Chen, M. (2020). Noninvasive Recording of Cardiac Autonomic Nervous Activity: What Is Behind ECG?. In: Liu, C., Li, J. (eds) Feature Engineering and Computational Intelligence in ECG Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-3824-7_14

Download citation

Publish with us

Policies and ethics