Skip to main content

Rare Peritoneal Tumours: Histopathological Diagnosis and Patterns of Peritoneal Dissemination

  • Chapter
  • First Online:
Pathology of Peritoneal Metastases

Abstract

Rare peritoneal tumours comprise of rare tumours arising de novo from the peritoneum or metastasizing to the peritoneum. Many of these tumours are extremely rare with few hundred cases reported in literature, sometimes even lesser. The natural history of many of these tumours is not known. Some tumours are so rare that only few cases are seen by a surgeon or a pathologist in their entire career. The pathological features may overlap with other more common tumours and it may be a diagnosis of exclusion or the tumour may have peculiar features that a pathologist is unfamiliar with.

In this chapter, we look at the diagnostic challenges and peculiarities of rare tumours commonly presenting to a peritoneal surface malignancy unit from a pathological perspective. We review existing literature to study the patterns of peritoneal dissemination in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Churg A, Roggli V, Galateau-Salle F, et al. Mesothelioma. In: Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC, editors. WHO classification of tumours. Pathology & genetics. Tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004. p. 128–36.

    Google Scholar 

  2. Cook DS, Attanoos RL, Jalloh SS, et al. ‘Mucinpositive’ epithelial mesothelioma of the peritoneum: an unusual diagnostic pitfall. Histopathology. 2000;37:33–6.

    CAS  PubMed  Google Scholar 

  3. Rekhi B, Pathuthara S, Ajit D, et al. ‘Signet-ring’ cells—a caveat in the diagnosis of a diffuse peritoneal mesothelioma occurring in a lady presenting with recurrent ascites: an unusual case report. Diagn Cytopathol. 2010;38:435–9.

    PubMed  Google Scholar 

  4. Hammar SP, Bockus DE, Remington FL, Rohrbach KA. Mucin-positive epithelial mesotheliomas: a histochemical, immunohistochemical, and ultrastructural comparison with mucin-producing pulmonary adenocarcinomas. Ultrastruct Pathol. 1996;20:293–325.

    CAS  PubMed  Google Scholar 

  5. Hammar SP. Macroscopic, histologic, histochemical, immuno-histochemical, and ultrastructural features of mesothelioma. Ultrastruct Pathol. 2006;30:3–17.

    PubMed  Google Scholar 

  6. Kuroda K, Ishizawa S, Kudo T, et al. Localized malignant mesenteric mesothelioma causing small bowel obstruction. Pathol Int. 2008;58:239–43.

    PubMed  Google Scholar 

  7. Kim JH, Kwon KY, Jeon YK, Nam JH, Choi C, Hyeon CL, Choi YD. Mucin-positive epithelial mesothelioma of the peritoneum: small bowel involvement. Pathol Int. 2011;61(12):756–61. https://doi.org/10.1111/j.1440-1827.2011.02732.x. Epub 12 Sept 2011.

    Article  PubMed  Google Scholar 

  8. Bridda A, Padoan I, Mencarelli R, Frego M. Peritoneal mesothelioma: a review. MedGenMed. 2007;9:32.

    PubMed  PubMed Central  Google Scholar 

  9. Ordóñez NG. Mesothelioma with signet-ring cell features: report of 23 cases. Mod Pathol. 2013;26(3):370–84. https://doi.org/10.1038/modpathol.2012.172. Epub 5 Oct 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Ordóñez NG, Myhre M, Mackay B. Clear cell mesothelioma. Ultrastruct Pathol. 1996;20:331–6.

    PubMed  Google Scholar 

  11. Ordóñez NG. Mesotheliomas with small cell features: report of eight cases. Mod Pathol. 2012;25:689–98.

    PubMed  Google Scholar 

  12. Ordóñez NG. The diagnostic utility of immunohistochemistry and electron microscopy in distinguishing between peritoneal mesotheliomas and serous carcinomas: a comparative study. Mod Pathol. 2006;19:34–48.

    PubMed  Google Scholar 

  13. Ordóñez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol. 2013;44(1):1–19. (E-pub ahead of print).

    PubMed  Google Scholar 

  14. Coleman M, Henderson DW, Mukherjee TM. The ultrastructural pathology of malignant pleural mesothelioma. Pathol Annu. 1989;24:303–53.

    PubMed  Google Scholar 

  15. Bhatt A, Ramakrishnan AS. Rare indications for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. In: Bhatt A, editor. Management of peritoneal metastases—cytoreductive surgery, HIPEC and beyond. Singapore: Springer; 2018.

    Google Scholar 

  16. Tavassoli FA, Norris HJ. Peritoneal leiomyomatosis (leiomyomatosis peritonealis disseminata): a clinicopathologic study of 20 cases with ultrastructural observations. Int J Gynecol Pathol. 1982;1:59–74.

    CAS  PubMed  Google Scholar 

  17. Erbstober VE, Lessel W. Disseminated peritoneal leiomyomatosis: case contribution to the differential diagnosis of benign multiple peritoneal neoplasms. Zentralb Chir. 1982;107:223–6.

    Google Scholar 

  18. Mansour F, Darai E, Felgeres A, Meicler P, Pinet C, Colau JC. La leiomyomatose péritonéale disseminee: a propos d’un cas. Rev Fr Gynecol Obstet. 1992;87:431–3.

    CAS  PubMed  Google Scholar 

  19. Kitazawa S, Shiraishi N, Maeda S. Leiomyomatosis peritonealis disseminata with adipocytic differentiation. Acta Obstet Gynecol Scand. 1992;71:482–4.

    CAS  PubMed  Google Scholar 

  20. Fujii S, Okamura H, Nakashima N, Bann C, Aso T, Nishimura T. Leiomyomatosis peritonealis disseminata. Obstet Gynecol. 1980;55:79S–83S.

    CAS  PubMed  Google Scholar 

  21. Lim OW, Segal A, Ziel HK. Leiomyomatosis peritonealis disseminata associated with pregnancy. Obstet Gynecol. 1980;55:122–5.

    CAS  PubMed  Google Scholar 

  22. Sutherland JA, Wilson EA, Edger DE, Powell D. Ultrastructure and steroid-binding studies in leiomyomatosis peritonealis disseminata. Am J Obstet Gynecol. 1980;136:992–6.

    CAS  PubMed  Google Scholar 

  23. Walley VM. Leiomyomatosis peritonealis disseminata. Int J Gynecol Pathol. 1983;2:222–3.

    CAS  PubMed  Google Scholar 

  24. Due W, Pickartz H. Immunohistologic detection of estrogen and progesterone receptors in disseminated peritoneal leiomyomatosis. Int J Gynecol Pathol. 1989;8:46–53.

    CAS  PubMed  Google Scholar 

  25. Thejls H, Pettersson B, Nordlinder H. Leiomyomatosis peritonealis disseminata. Acta Obstet Gynecol Scand. 1986;65:373–4.

    CAS  PubMed  Google Scholar 

  26. Hales HA, Peterson CM, Jones KP, Quinn JD. Leiomyomatosis peritonealis disseminata treated with a gonadotropin-releasing hormone agonist: a case report. Am J Obstet Gynecol. 1992;167:515–6.

    CAS  PubMed  Google Scholar 

  27. Ma KF, Chow LT. Sex cord-like pattern leiomyomatosis peritonealis disseminata: a hitherto undescribed feature. Histopathology. 1992;21:389–91.

    CAS  PubMed  Google Scholar 

  28. Aruh I, Taskin O, Demir N. Recurrent leiomyomatosis peritonealis disseminata. Int J Gynaecol Obstet. 1993;43:330–1.

    CAS  PubMed  Google Scholar 

  29. Rubin SC, Wheeler JE, Mikuta JJ. Malignant leiomyomatosis peritonealis disseminata. Obstet Gynecol. 1986;68:126–9.

    CAS  PubMed  Google Scholar 

  30. Akkersdijk GJM, Flu PK, Giard RWM, van Lent M, Wallenburg HCS. Malignant leiomyomatosis peritonealis disseminata. Am J Obstet Gynecol. 1990;163:591–3.

    CAS  PubMed  Google Scholar 

  31. Abulafia O, Angel C, Sherer DM, Fultz PJ, Bonfiglio TA, DuBeshter B. Computed tomography of leiomyomatosis peritonealis disseminata with malignant transformation. Am J Obstet Gynecol. 1993;169:52–4.

    CAS  PubMed  Google Scholar 

  32. Lauchlan S. The secondary Mullerian system. Obstet Gynecol Surv. 1972;27:133–46.

    CAS  PubMed  Google Scholar 

  33. Clement P, Young R, Scully R. The peritoneum. In: Sternberg S, editor. Diagnostic surgical pathology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999. p. 2427–31.

    Google Scholar 

  34. Fredericks S, Russel P, Cooper M, et al. Smooth muscle in the female pelvic peritoneum: a clinicopathological analysis of 31 women. Pathology. 2005;37(1):14–21.

    PubMed  Google Scholar 

  35. Paal E, Miettinen M. Retroperitoneal leiomyomas: a clinicopathologic and immunohistochemical study of 56 cases with a comparison to retroperitoneal leiomyosarcomas. Am J Surg Pathol. 2001;25(11):1355–63.

    CAS  PubMed  Google Scholar 

  36. Herr J, Platz C, Heidger P, et al. Smooth muscle within ovarian decidual nodules: a link to leiomyomatosis peritonealis disseminata? Obstet Gynecol. 1979;53:451–6.

    CAS  PubMed  Google Scholar 

  37. Goldberg M, Hurt W, Frable W. Leiomyomatosis peritonealis disseminate. Report of a case and review of the literature. Obstet Gynecol. 1977;49(Suppl):46–52.

    CAS  PubMed  Google Scholar 

  38. Nogales F, Matilla A, Carrascal E. Leiomyomatosis peritonealis disseminata. An ultrastructural study. Am J Clin Pathol. 1978;69:452–7.

    PubMed  Google Scholar 

  39. Sobiczewski P, Bidzinski M, Radziszewski J, et al. Disseminated peritoneal leiomyomatosis—case report and literature review. Ginekol Pol. 2004;75(3):215–20.

    PubMed  Google Scholar 

  40. Bekkers R, Willemsen W, Schijf C, et al. Leiomyomatosis peritonealis disseminate: does malignant transformation occur? A literature review. Gynecol Oncol. 1999;75(1):158–63.

    CAS  PubMed  Google Scholar 

  41. Minassian S, Frangipane W, Polin J, et al. Leiomyomatosis peritonealis disseminata. A case report and literature review. J Reprod Med. 1986;31(10):997–1000.

    CAS  PubMed  Google Scholar 

  42. Herrero J, Kamali P, Kirschbaum M. Leiomyomatosis peritonealis disseminata associated with endometriosis: a case report and literature review. Eur J Obstet Gynecol Reprod Biol. 1998;76(2):189–91.

    CAS  PubMed  Google Scholar 

  43. Mueller F, Kuehn K, Neudeck H, Nina S, Uwe U, et al. Disseminated peritoneal leiomyomatosis with endometriosis. J Minim Invasive Gynecol. 2012;19(3):380–2.

    PubMed  Google Scholar 

  44. Ciebiera M, Słabuszewska-Jóźwiak A, Zaręba K, Jakiel G. A case of disseminated peritoneal leiomyomatosis after two laparoscopic procedures due to uterine fibroids. Wideochir Inne Tech Maloinwazyjne. 2017;12(1):110–4. https://doi.org/10.5114/wiitm.2017.66045. Epub 15 Feb 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kumar S, Sharma JB, Verma D, et al. Disseminated peritoneal leiomyomatosis: an unusual complication of laparoscopic myomectomy. Arch Gynecol Obstet. 2008;278:93–5.

    PubMed  Google Scholar 

  46. Ceccaroni M, Roviglione G, Pesci A, et al. Total laparoscopic hysterectomy of very enlarged uterus (3030 g): case report and review of the literature. Videosurgery Miniinv. 2014;9:302–7.

    Google Scholar 

  47. Sinha R, Sundaram M, Mahajan C, et al. Multiple leiomyomas after laparoscopic hysterectomy: report of two cases. J Minim Invasive Gynecol. 2007;14:123–7.

    PubMed  Google Scholar 

  48. Lausen I, Jensen OJ, Andersen E, et al. Disseminated peritoneal leiomyomatosis with malignant change, in a male. Virchows Arch A Pathol Anat. 1990;417:173. https://doi.org/10.1007/BF02190536.

    Article  CAS  Google Scholar 

  49. Fulcher AS, Szucs RA. Leiomyomatosis peritonealis disseminata complicated by sarcomatous transformation and ovarian torsion: presentation of two cases and review of the literature. Abdom Imaging. 1998;23:640–4.

    CAS  PubMed  Google Scholar 

  50. Quade BJ, McLachlin CM, Soto-Wright V, Zuckerman J, Mutter GL, Morton CC. Disseminated peritoneal leiomyomatosis. Clonality analysis by X chromosome inactivation and cytogenetics of a clinically benign smooth muscle proliferation. Am J Pathol. 1997;150:2153–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyake T, Enomoto T, Ueda Y, et al. A case of disseminated peritoneal leiomyomatosis developing after laparoscope-assisted myomectomy. Gynecol Obstet Investig. 2009;67:96–102.

    Google Scholar 

  52. Raspagliesi F, Quattrone P, Grosso G, Cobellis L, Di Re E. Malignant degeneration in leiomyomatosis peritonealis disseminata. Gynecol Oncol. 1996;61(2):272–4.

    CAS  PubMed  Google Scholar 

  53. Furman J, Murphy WM, Wajsman Z, et al. Urogenital involvement by desmoplastic small round-cell tumor. J Urol. 1997;158:1506–9.

    CAS  PubMed  Google Scholar 

  54. Kawano N, Inayama Y, Nagashima Y, et al. Desmoplastic small round-cell tumor of the paratesticular region: report of an adult case with demonstration of EWS and WT1 gene fusion using paraffin-embedded tissue. Mod Pathol. 1999;12:729–34.

    CAS  PubMed  Google Scholar 

  55. Ordóñez NG, el-Naggar AK, Ro JY, et al. Intraabdominal desmoplastic small cell tumor: a light microscopic, immunocytochemical, ultrastructural, and flow cytometric study. Hum Pathol. 1993;24:850–65.

    PubMed  Google Scholar 

  56. Slomovitz BM, Girotra M, Aledo A, et al. Desmoplastic small round cell tumor with primary ovarian involvement: case report and review. Gynecol Oncol. 2000;79:124–8.

    CAS  PubMed  Google Scholar 

  57. Prat J, Matias-Guiu X, Algaba F. Desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16:306–7.

    CAS  PubMed  Google Scholar 

  58. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol. 1991;15:499–513.

    CAS  PubMed  Google Scholar 

  59. Ordóñez NG, Zirkin R. Malignant small-cell epithelial tumor of the peritoneum coexpressing mesenchymal-type intermediate filaments. Am J Surg Pathol. 1989;13:413–21.

    PubMed  Google Scholar 

  60. Thway K, Noujaim J, Zaidi S, Miah AB, Benson C, Messiou C, Jones RL, Fisher C. Desmoplastic small round cell tumor: pathology, genetics, and potential therapeutic strategies. Int J Surg Pathol. 2016;24(8):672–84. Epub 12 Sept 2016.

    CAS  PubMed  Google Scholar 

  61. Chan AS, MacNeill S, Thorner P, Squire J, Zielenska M. Variant EWS-WT1 chimeric product in the desmoplastic small round cell tumor. Pediatr Dev Pathol. 1999;2:188–92.

    CAS  PubMed  Google Scholar 

  62. Rodriguez E, Sreekantaiah C, Gerald W, Reuter VE, Motzer RJ, Chaganti RS. A recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet Cytogenet. 1993;69:17–21.

    CAS  PubMed  Google Scholar 

  63. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994;54:2837–40.

    CAS  PubMed  Google Scholar 

  64. Sawyer JR, Tryka AF, Lewis JM. A novel reciprocal chromosome translocation t(11;22) (p13;q12) in an intraabdominal desmoplastic small round-cell tumor. Am J Surg Pathol. 1992;16:411–6.

    CAS  PubMed  Google Scholar 

  65. Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci U S A. 1995;92:1028–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gerald WL, Haber DA. The EWS-WT1 gene fusion in desmoplastic small round cell tumor. Semin Cancer Biol. 2005;15:197–205.

    CAS  PubMed  Google Scholar 

  67. Liu J, Nau MM, Yeh JC, Allegra CJ, Chu E, Wright JJ. Molecular heterogeneity and function of EWS-WT1 fusion transcripts in desmoplastic small round cell tumors. Clin Cancer Res. 2000;6:3522–9.

    CAS  PubMed  Google Scholar 

  68. Antonescu CR, Gerald WL, Magid MS, Ladanyi M. Molecular variants of the EWS-WT1 gene fusion in desmoplastic small round cell tumor. Diagn Mol Pathol. 1998;7:24–8.

    CAS  PubMed  Google Scholar 

  69. Ud Din N, Pekmezci M, Javed G, et al. Low-grade small round cell tumor of the cauda equina with EWSR1-WT1 fusion and indolent clinical course. Hum Pathol. 2015;46:153–8.

    PubMed  Google Scholar 

  70. Rao P, Tamboli P, Fillman EP, Meis JM. Primary intrarenal desmoplastic small round cell tumor: expanding the histologic spectrum, with special emphasis on the differential diagnostic considerations. Pathol Res Pract. 2014;210:1130–3.

    PubMed  Google Scholar 

  71. Antonescu CR, Ladanyi M. Desmoplastic small round cell tumour. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 225–7.

    Google Scholar 

  72. Bono F, Testi MA, Rosai J. Desmoplastic small cell tumor with bizarre giant nuclei. Int J Surg Pathol. 2011;19:843–6.

    PubMed  Google Scholar 

  73. Ordóñez NG. Desmoplastic small round cell tumor: I: a histopathologic study of 39 cases with emphasis on unusual histological patterns. Am J Surg Pathol. 1998;22:1303–13.

    PubMed  Google Scholar 

  74. Pasquinelli G, Montanaro L, Martinelli GN. Desmoplastic small round-cell tumor: a case report on the large cell variant with immunohistochemical, ultrastructural, and molecular genetic analysis. Ultrastruct Pathol. 2000;24:333–7.

    CAS  PubMed  Google Scholar 

  75. Trupiano JK, Machen SK, Barr FG, Goldblum JR. Cytokeratin-negative desmoplastic small round cell tumor: a report of two cases emphasizing the utility of reverse transcriptase-polymerase chain reaction. Mod Pathol. 1999;12:849–53.

    CAS  PubMed  Google Scholar 

  76. Ordóñez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22:1314–27.

    PubMed  Google Scholar 

  77. Zhang PJ, Goldblum JR, Pawel BR, Fisher C, Pasha TL, Barr FG. Immunophenotype of desmoplastic small round cell tumors as detected in cases with EWS-WT1 gene fusion product. Mod Pathol. 2003;16:229–35.

    PubMed  Google Scholar 

  78. Murphy AJ, Bishop K, Pereira C, et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum Pathol. 2008;39:1763–70.

    CAS  PubMed  Google Scholar 

  79. Sigauke E, Rakheja D, Maddox DL, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol. 2006;19:717–25.

    CAS  PubMed  Google Scholar 

  80. Soon GS, Petersson F. Beware of immunohistochemistry—report of a cytokeratin-, desmin- and INI-1-negative pelvic desmoplastic small round cell tumor in a 51-year old woman. Int J Clin Exp Pathol. 2015;8:973–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hung YP, Fletcher CD, Hornick JL. Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol. 2016;29:370–80.

    CAS  PubMed  Google Scholar 

  82. Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H. NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma. Am J Surg Pathol. 2012;36:993–9.

    PubMed  Google Scholar 

  83. Specht K, Sung YS, Zhang L, Richter GH, Fletcher CD, Antonescu CR. Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities. Genes Chromosomes Cancer. 2014;53:622–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Antonescu C. Round cell sarcomas beyond Ewing: emerging entities. Histopathology. 2014;64:26–37.

    PubMed  Google Scholar 

  85. Italiano A, Sung YS, Zhang L, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51:207–18.

    CAS  PubMed  Google Scholar 

  86. Graham C, Chilton-MacNeill S, Zielenska M, Somers GR. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43:180–9.

    CAS  PubMed  Google Scholar 

  87. Yoshida A, Goto K, Kodaira M, et al. CIC-rearranged sarcomas: a study of 20 cases and comparisons with Ewing sarcomas. Am J Surg Pathol. 2016;40:313–23.

    PubMed  Google Scholar 

  88. Sugita S, Arai Y, Tonooka A, et al. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol. 2014;38:1571–6.

    PubMed  Google Scholar 

  89. Solomon DA, Brohl AS, Khan J, Miettinen M. Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol. 2014;38:1724–5.

    PubMed  PubMed Central  Google Scholar 

  90. Pierron G, Tirode F, Lucchesi C, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44:461–6.

    CAS  PubMed  Google Scholar 

  91. Puls F, Niblett A, Marland G, Gaston CL, Douis H, Mangham DC, et al. BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol. 2014;38:1307–18.

    PubMed  Google Scholar 

  92. Cole P, Ladanyi M, Gerald WL, et al. Synovial sarcoma mimicking desmoplastic small round-cell tumor: critical role for molecular diagnosis. Med Pediatr Oncol. 1999;32:97–101.

    CAS  PubMed  Google Scholar 

  93. Fisher C. Synovial sarcoma. Ann Diagn Pathol. 1998;2:401–21.

    CAS  PubMed  Google Scholar 

  94. Thway K, Fisher C. Synovial sarcoma: defining features and diagnostic evolution. Ann Diagn Pathol. 2014;18:369–80.

    PubMed  Google Scholar 

  95. Terry J, Saito T, Subramanian S, et al. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31:240–6.

    PubMed  Google Scholar 

  96. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22:872–8.

    CAS  PubMed  Google Scholar 

  97. Thway K, Fisher C. Malignant peripheral nerve sheath tumor: pathology and genetics. Ann Diagn Pathol. 2014;18:109–16.

    PubMed  Google Scholar 

  98. Thway K, Fisher C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol. 2012;36:e1–e11.

    PubMed  Google Scholar 

  99. Wang J, Thway K. Clear cell sarcoma-like tumor of the gastrointestinal tract: an evolving entity. Arch Pathol Lab Med. 2015;139:407–12.

    PubMed  Google Scholar 

  100. Zambrano E, Reyes-Mugica M, Franchi A, Rosai J. An osteoclast-rich tumor of the gastrointestinal tract with features resembling clear cell sarcoma of soft parts: reports of 6 cases of a GIST simulator. Int J Surg Pathol. 2003;11:75–81.

    PubMed  Google Scholar 

  101. Stockman DL, Miettinen M, Suster S, et al. Malignant gastro-intestinal neuroectodermal tumor: clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of 16 cases with a reappraisal of clear cell sarcoma-like tumors of the gastrointestinal tract. Am J Surg Pathol. 2012;36:857–68.

    PubMed  PubMed Central  Google Scholar 

  102. Shenjere P, Salman WD, Singh M, et al. Intra-abdominal clear-cell sarcoma: a report of 3 cases, including 1 case with unusual morphological features, and review of the literature. Int J Surg Pathol. 2012;20:378–85.

    PubMed  Google Scholar 

  103. Eifel P, Hendrickson M, Ross J, et al. Simultaneous presentation of carcinoma involving the ovary and the uterine corpus. Cancer. 1982;50:163–70.

    CAS  PubMed  Google Scholar 

  104. Jondle DM, Shahin MS, Sorosky J, Benda JA. Ovarian mixed germ cell tumor with predominance of polyembryoma: a case report with literature review. Int J Gynecol Pathol. 2002;21:78–81.

    PubMed  Google Scholar 

  105. Gershenson DM. Management of ovarian germ cell tumors. J Clin Oncol. 2007;25(20):2938–43.

    CAS  PubMed  Google Scholar 

  106. Tavassoli FA, Deville P. Pathology and genetics of tumours of the breast and female genital organs. International Agency for Research on Cancer: Lyon; 2003.

    Google Scholar 

  107. Roth LM, Talerman A. Recent advances in the pathology and classification of ovarian germ cell tumors. Int J Gynecol Pathol. 2006;25:305–20.

    PubMed  Google Scholar 

  108. Creasman WT, Fetter BF, Hammond CB, Parker RT. Germ cell malignancies of the ovary. Obstet Gynecol. 1979;53:226–30.

    CAS  PubMed  Google Scholar 

  109. Fleischhacker DS, Young RH. Dysgerminoma of the ovary associated with hypercalcemia. Gynecol Oncol. 1994;52:87–90.

    CAS  PubMed  Google Scholar 

  110. Santesson L. Clinical and pathological survey of ovarian tumors treated at the Radium-hemmet. Acta Radiol (Stockh). 1947;28:644–68.

    CAS  Google Scholar 

  111. Dietl J, Horny HP, Ruck P, Kaiserling E. Dysgerminoma of the ovary. An immunohistochemical study of tumor-infiltrating lymphoreticular cells and tumor cells. Cancer. 1993;71:2562–8.

    CAS  PubMed  Google Scholar 

  112. Asadourian LA, Taylor HB. Dysgerminoma. An analysis of 105 cases. Obstet Gynecol. 1969;33:370–9.

    CAS  PubMed  Google Scholar 

  113. Beckstead JH. Alkaline phosphatase histochemistry in human germ cell neoplasms. Am J Surg Pathol. 1983;7:341–9.

    CAS  PubMed  Google Scholar 

  114. Cossu-Rocca P, Jones TD, Roth LM, et al. Cytokeratin and CD30 expression in dysgerminoma. Hum Pathol. 2006;37:1015–21.

    CAS  PubMed  Google Scholar 

  115. Lifshitz-Mercer B, Walt H, Kushnir I, et al. Differentiation potential of ovarian dysgerminoma. An immunohistochemical study of 15 cases. Hum Pathol. 1995;26:62–6.

    Google Scholar 

  116. Eildermann K, Aeckerle N, Debowski K, et al. Developmental expression of the pluripotency factor sal-like protein 4 in the monkey, human and mouse testis: restriction to premeiotic germ cells. Cells Tissues Organs. 2012;196(3):206–20.

    CAS  PubMed  Google Scholar 

  117. Trinh DT, Shibata K, Hirosawa T, et al. Diagnostic utility of CD117, CD133, SALL4, OCT4, TCL1 and glypican-3 in malignant germ cell tumors of the ovary. J Obstet Gynaecol Res. 2012;38(5):841–8.

    CAS  PubMed  Google Scholar 

  118. Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol. 2007;31(6):836–45.

    PubMed  Google Scholar 

  119. Battifora H, Sheibani K, Tubbs RR, Kopinski MI, Sun TT. Antikeratin antibodies in tumor diagnosis: distinction between seminoma and embryonal carcinoma. Cancer. 1984;54(5):843–8.

    CAS  PubMed  Google Scholar 

  120. Parkash V, Carcangiu ML. Transformation of ovarian dysgerminoma to yolk sac tumor: evidence for a histogenetic continuum. Mod Pathol. 1995;8(8):881–7.

    CAS  PubMed  Google Scholar 

  121. Park NH, Ryu SY, Park IA, et al. Primary endodermal sinus tumor of the omentum. Gynecol Oncol. 1999;72:427–30.

    CAS  PubMed  Google Scholar 

  122. Gonzalez-Crussi F. The human yolk sac and yolk sac (endodermal sinus) tumors. A review. Persp Pediatr Pathol. 1979;5:179–215.

    CAS  Google Scholar 

  123. Jones MA, Clement PB, Young RH. Primary yolk sac tumors of the mesentery. A report of two cases. Am J Clin Pathol. 1994;101:42–7.

    CAS  PubMed  Google Scholar 

  124. Garcia-Galvis OF, Stolnicu S, Munoz E, Aneiros-Fernandez J, Alaggio R, Nogales FF. Adult extrarenal Wilms tumor of the uterus with teratoid features. Hum Pathol. 2009;40(3):418–24.

    PubMed  Google Scholar 

  125. Garcia-Galvis OF, Cabrera-Ozoria C, Fernandez JA, Stolnicu S, Nogales FF. Malignant Mullerian mixed tumor of the ovary associated with yolk sac tumor, neuroepithelial and trophoblastic differentiation (teratoid carcinosarcoma). Int J Gynecol Pathol. 2008;27(4):515–20.

    PubMed  Google Scholar 

  126. Nogales FF, Preda O, Nicolae A. Yolk sac tumours revisited: a review of their many faces and names. Histopathology. 2012;60(7):1023–33.

    PubMed  Google Scholar 

  127. Kandil DH, Cooper K. Glypican-3: a novel diagnostic marker for hepatocellular carcinoma and more. Adv Anat Pathol. 2009;16(2):125–9.

    CAS  PubMed  Google Scholar 

  128. Zynger DL, Everton MJ, Dimov ND, Chou PM, Yang XJ. Expression of glypican 3 in ovarian and extragonadal germ cell tumors. Am J Clin Pathol. 2008;130(2):224–30.

    PubMed  Google Scholar 

  129. Preda O, Nicolae A, Aneiros-Fernandez J, Borda A, Nogales FF. Glypican 3 is a sensitive, but not a specific, marker for the diagnosis of yolk sac tumours. Histopathology. 2011;58(2):312–4; author reply 314–5.

    PubMed  Google Scholar 

  130. Pitman MB, Triratanachat S, Young RH, Oliva E. Hepatocyte paraffin 1 antibody does not distinguish primary ovarian tumors with hepatoid differentiation from metastatic hepatocellular carcinoma. Int J Gynecol Pathol. 2004;23(1):58–64.

    PubMed  Google Scholar 

  131. Bing Z, Pasha T, Tomaszewski JE, Zhang P. CDX2 expression in yolk sac component of testicular germ cell tumors. Int J Surg Pathol. 2009;17(5):373–7.

    PubMed  Google Scholar 

  132. Nogales FF, Dulcey I, Preda O. Germ cell tumors of the ovary: an update. Arch Pathol Lab Med. 2014;138(3):351–62. https://doi.org/10.5858/arpa.2012-0547-RA.

    Article  PubMed  Google Scholar 

  133. Nogales FF, Matilla A, Nogales-Ortiz F, Galera-Davidson HL. Yolk sac tumors with pure and mixed polyvesicular vitelline patterns. Hum Pathol. 1978;9:553–66.

    PubMed  Google Scholar 

  134. Cohen MB, Friend DS, Molnar JJ. Gonadal endodermal sinus (yolk sac) tumor with pure intestinal differentiation. A new histologic type. Pathol Res Pract. 1987;182:609–16.

    CAS  PubMed  Google Scholar 

  135. Pallesen G, Hamilton-Dutoit SJ. Ki-1 (CD30) antigen is regularly expressed by tumor cells of embryonal carcinoma. Am J Pathol. 1988;133(3):446–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Stein H, Gerdes J, Schwab U, et al. Identification of Hodgkin and Sternberg-Reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer. 1982;30(4):445–59.

    CAS  PubMed  Google Scholar 

  137. Oflazoglu E, Grewal IS, Gerber H. Targeting CD30/CD30L in oncology and autoimmune and inflammatory diseases. Adv Exp Med Biol. 2009;647:174–85.

    CAS  PubMed  Google Scholar 

  138. Noisa P, Ramasamy TS, Lamont FR, et al. Identification and characterisation of the early differentiating cells in neural differentiation of human embryonic stem cells. PLoS One. 2012;7(5):e37129.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ulbright TM, Roth LM, Brodhecker CA. Yolk sac differentiation in germ cell tumors. A morphologic study of 50 cases with emphasis on hepatic, enteric, and parietal yolk sac features. Am J Surg Pathol. 1986;10:151–64.

    CAS  PubMed  Google Scholar 

  140. McCluggage WG. Value of inhibin staining in gynecological pathology. Int J Gynecol Pathol. 2001;20(1):79–85.

    CAS  PubMed  Google Scholar 

  141. Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.

    PubMed  Google Scholar 

  142. Cheng L, Zhang S, Talerman A, Roth LM. Morphologic, immunohistochemical, and fluorescence in situ hybridization study of ovarian embryonal carcinoma with comparison to solid variant of yolk sac tumor and immature teratoma. Hum Pathol. 2010;41:716–23.

    CAS  PubMed  Google Scholar 

  143. O’Connor DM, Norris HJ. The influence of grade on the outcome of stage I ovarian immature (malignant) teratomas and the reproducibility of grading. Int J Gynecol Pathol. 1994;13(4):283–9.

    PubMed  Google Scholar 

  144. Nogales FF Jr, Favara BE, Major FJ, Silverberg SG. Immature teratoma of the ovary with a neural component (“solid” teratoma): a clinicopathologic study of 20 cases. Hum Pathol. 1976;7(6):625–42.

    PubMed  Google Scholar 

  145. Yanai-Inbar I, Scully RE. Relation of ovarian dermoid cysts and immature teratomas: an analysis of 350 cases of immature teratoma and 10 cases of dermoid cyst with microscopic foci of immature tissue. Int J Gynecol Pathol. 1987;6(3):203–12.

    CAS  PubMed  Google Scholar 

  146. Nogales FF, Aguilar D. Florid vascular proliferation in grade 0 glial implants from ovarian immature teratoma. Int J Gynecol Pathol. 2002;21(3):305–7.

    PubMed  Google Scholar 

  147. Dadmanesh F, Miller DM, Swenerton KD, Clement PB. Gliomatosis peritonei with malignant transformation. Mod Pathol. 1997;10(6):597–601.

    CAS  PubMed  Google Scholar 

  148. Vang R, Gown AM, Zhao C, et al. Ovarian mucinous tumors associated with mature cystic teratomas: morphologic and immunohistochemical analysis identifies a subset of potential teratomatous origin that shares features of lower gastrointestinal tract mucinous tumors more commonly encountered as secondary tumors in the ovary. Am J Surg Pathol. 2007;31(6):854–69.

    PubMed  Google Scholar 

  149. Wei S, Baloch ZW, LiVolsi VA. Pathology of struma ovarii: a report of 96 cases. Endocr Pathol. 2015;26(4):342–8. https://doi.org/10.1007/s12022-015-9396-1.

    Article  PubMed  Google Scholar 

  150. Chun YK. Neuroendocrine tumors of the female reproductive tract: a literature review. J Pathol Transl Med. 2015;49:450–1.

    PubMed Central  Google Scholar 

  151. Rouzbahman M, Clarke B. Neuroendocrine tumors of the gynecologic tract: select topics. Semin Diagn Pathol. 2013;30:224–33.

    PubMed  Google Scholar 

  152. Reed NS, Gomez-Garcia E, Gallardo-Rincon D, et al. Gynecologic Cancer InterGroup (GCIG) consensus review for carcinoid tumors of the ovary. Int J Gynecol Cancer. 2014;24(9 Suppl 3):S35–41.

    PubMed  Google Scholar 

  153. Davis KP, Hartmann LK, Keeney GL, Shapiro H. Primary ovarian carcinoid tumors. Gynecol Oncol. 1996;61:259–65.

    CAS  PubMed  Google Scholar 

  154. Robboy SJ, Norris HJ, Scully RE. Insular carcinoid primary in the ovary: a clinicopathologic analysis of 48 cases. Cancer. 1975;36:404–18.

    CAS  PubMed  Google Scholar 

  155. Robboy SJ, Scully RE. Strumal carcinoid of the ovary: an analysis of 50 cases of a distinctive tumor composed of thyroid tissue and carcinoid. Cancer. 1980;46:2019–34.

    CAS  PubMed  Google Scholar 

  156. Baker PM, Oliva E, Young RH, Talerman A, Scully RE. Ovarian mucinous carcinoids including some with a carcinomatous component: a report of 17 cases. Am J Surg Pathol. 2001;25:557–68.

    CAS  PubMed  Google Scholar 

  157. Howitt BE, Kelly P, McCluggage WG. Pathology of neuroendocrine tumours of the female genital tract. Curr Oncol Rep. 2017;19:59.

    PubMed  Google Scholar 

  158. Hidvegi D, Cibils LA, Sorensen K, et al. Ultrastructural and histochemical observations of neuroendocrine granules in nonneoplastic ovaries. Am J Obstet Gynecol. 1982;143:590–4.

    CAS  PubMed  Google Scholar 

  159. Talerman A. Carcinoid tumors of the ovary. J Cancer Res Oncol. 1984;107:125–35.

    CAS  Google Scholar 

  160. Zhang X, Jones A, Jenkins SM, et al. ki 67 proliferative index in carcinoid tumours involving the ovary. Endocr Pathol. 2018;29:43. https://doi.org/10.1007/s12022-017-9510-7.

    Article  CAS  PubMed  Google Scholar 

  161. Bjorkholm E, Silfversward C. Prognostic factors in granulosa-cell tumors. Gynecol Oncol. 1981;11(3):261–74.

    CAS  PubMed  Google Scholar 

  162. Evans AT 3rd, Gaffey TA, Malkasian GD Jr, Annegers JF. Clinicopathologic review of 118 granulosa and 82 theca cell tumors. Obstet Gynecol. 1980;55(2):231–8.

    PubMed  Google Scholar 

  163. Stenwig JT, Hazekamp JT, Beecham JB. Granulosa cell tumors of the ovary. A clinicopathological study of 118 cases with long-term follow-up. Gynecol Oncol. 1979;7(2):136–52.

    CAS  PubMed  Google Scholar 

  164. Kottarathil VD, Antony MA, Nair IR, Pavithran K. Recent advances in granulosa cell tumor ovary: a review. Indian J Surg Oncol. 2013;4(1):37–47. https://doi.org/10.1007/s13193-012-0201-z. Epub 7 Dec 2012.

    Article  PubMed  Google Scholar 

  165. Zhang M, Cheung MK, Shin JY, Kapp DS, Husain A, Teng NN, Berek JS, Osann K, Chan JK. Prognostic factors responsible for survival in sex cord stromal tumors of the ovary: an analysis of 376 women. Gynecol Oncol. 2007;104:396–400. https://doi.org/10.1016/j.ygyno.2006.08.032.

    Article  PubMed  Google Scholar 

  166. Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvili G, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360:2719–29.

    CAS  PubMed  Google Scholar 

  167. Mangili G, Ottolina J, Gadducci A, Giorda G, Breda E, Savarese A, et al. Long-term follow-up is crucial after treatment for granulosa cell tumours of the ovary. Br J Cancer. 2013;109:29–34. https://doi.org/10.1038/bjc.2013.241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Colombo N, Sessa C, Landoni F, Sartori E, Pecorelli S, Mangioni C. Cisplatin, vinblastine, and bleomycin combination chemotherapy in metastatic granulosa cell tumor of the ovary. Obstet Gynecol. 1986;67(2):265–8.

    CAS  PubMed  Google Scholar 

  169. Fotopoulou C, Savvatis K, Braicu EI, et al. Adult granulosa cell tumors of the ovary: tumor dissemination pattern at primary and recurrent situation, surgical outcome. Gynecol Oncol. 2010;119:285–90.

    CAS  PubMed  Google Scholar 

  170. Schumer ST, Cannistra SA. Granulosa cell tumor of the ovary. J Clin Oncol. 2003;21:1180–9. https://doi.org/10.1200/JCO.2003.10.019.

    Article  PubMed  Google Scholar 

  171. Koukourakis GV, Kouloulias VE, Koukourakis MJ, Zacharias GA, Papadimitriou C, Mystakidou K, et al. Granulosa cell tumor of the ovary: tumor review. Integr Cancer Ther. 2008;7:204–15. https://doi.org/10.1177/1534735408322845.

    Article  PubMed  Google Scholar 

  172. Petraglia F, Luisi S, Pautier P, Sabourin JC, Rey R, Lhomme C, Bidart JM. Inhibin B is the major form of inhibin/activin family secreted by granulosa cell tumors. J Clin Endocrinol Metab. 1998;83:1029–32. https://doi.org/10.1210/jc.83.3.1029.

    Article  CAS  PubMed  Google Scholar 

  173. Mom CH, Engelen MJ, Willemse PH, Gietema JA, ten Hoor KA, de Vries EG, van der Zee AG. Granulosa cell tumors of the ovary: the clinical value of serum inhibin a and B levels in a large single center cohort. Gynecol Oncol. 2007;105:365–72. https://doi.org/10.1016/j.ygyno.2006.12.034.

    Article  CAS  PubMed  Google Scholar 

  174. Healy DL, Burger HG, Mamers P, Jobling T, Bangah M, Quinn M, Grant P, Day AJ, Rome R, Campbell JJ. Elevated serum inhibin concentrations in postmenopausal women with ovarian tumors. N Engl J Med. 1993;329:1539–42. https://doi.org/10.1056/NEJM199311183292104.

    Article  CAS  PubMed  Google Scholar 

  175. Ala-Fossi SL, Aine R, Punnonen R, Mäenpää J. Is potential to produce inhibins related to prognosis in ovarian granulosa cell tumors? Eur J Gynaecol Oncol. 2000;21:187–9.

    CAS  PubMed  Google Scholar 

  176. Long WQ, Ranchin V, Pautier P, Belville C, Denizot P, Cailla H, Lhommé C, Picard JY, Bidart JM, Rey R. Detection of minimal levels of serum anti-Mullerian hormone during follow-up of patients with ovarian granulose cell tumor by means of a highly sensitive enzyme-linked immunosorbent assay. J Clin Endocrinol Metab. 2000;85:540–4. https://doi.org/10.1210/jc.85.2.540.

    Article  CAS  PubMed  Google Scholar 

  177. Chang HL, Pahlavan N, Halpern EF, MacLaughlin DT. Serum Mullerian inhibiting substance/anti-Mullerian hormone levels in patients with adult granulosa cell tumors directly correlate with aggregate tumor mass as determined by pathology or radiology. Gynecol Oncol. 2009;114:57–60. https://doi.org/10.1016/j.ygyno.2009.02.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Anttonen M, Unkila-Kallio L, Leminen A, Butzow R, Heikinheimo M. High GATA-4 expression associates with aggressive behavior, whereas low anti-Mullerian hormone expression associates with growth potential of ovarian granulosa cell tumors. J Clin Endocrinol Metab. 2005;90:6529–35. https://doi.org/10.1210/jc.2005-0921.

    Article  CAS  PubMed  Google Scholar 

  179. Lee IH, Choi CH, Hong DG, Song JY, Kim YJ, Kim KT. Clinicopathologic characteristics of granulosa cell tumors of the ovary: a multicenter retrospective study. J Gynecol Oncol. 2011;22:188–95. https://doi.org/10.3802/jgo.2011.22.3.188.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Al-Bozom IA, El-Faqih SR, Hassan SH, El-Tiraifi AE, Talic RF. Granulosa cell tumor of the adult type. Arch Pathol Lab Med. 2000;124(10):1525–8.

    CAS  PubMed  Google Scholar 

  181. Jimenez-Quintero LP, Ro JY, Zavalo-Pomba A, et al. Granulosa cell tumor of the adult testis: a clinicopathologic study of seven cases. Hum Pathol. 1993;24:1120–6.

    CAS  PubMed  Google Scholar 

  182. Costa MJ, Ames PF, Walls J, et al. Inhibin immunohistochemistry applied to ovarian neoplasms: a novel, effective, diagnostic tool. Hum Pathol. 1997;28:1247–54.

    CAS  PubMed  Google Scholar 

  183. Deavers MT, Malpica A, Liu J, et al. Ovarian sex cord-stromal tumors: an immunohistochemical study including a comparison of calretinin and inhibin. Mod Pathol. 2003;16:584–90.

    PubMed  Google Scholar 

  184. Kommoss F, Oliva E, Bhan AK, et al. Inhibin expression in ovarian tumors and tumor-like lesions: an immunohistochemical study. Mod Pathol. 1998;11:656–4.

    CAS  PubMed  Google Scholar 

  185. McCluggage WG, Maxwell P. Immunohistochemical staining for calretinin is useful in the diagnosis of ovarian sex cordstromal tumours. Histopathology. 2001;38:403–8.

    CAS  PubMed  Google Scholar 

  186. Kalof AN, Cooper K. D2-40 immunohistochemistry—so far! Adv Anat Pathol. 2009;16:62–4.

    CAS  PubMed  Google Scholar 

  187. Ordóñez NG. D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma. Hum Pathol. 2005;36:372–80.

    PubMed  Google Scholar 

  188. Nofech-Mozes S, Ismiil N, Dubé V, Saad RS, Khalifa MA, Moshkin O, Ghorab Z. Immunohistochemical characterization of primary and recurrent adult granulosa cell tumors. Int J Gynecol Pathol. 2012;31(1):80–90. https://doi.org/10.1097/PGP.0b013e318224e089.

    Article  CAS  PubMed  Google Scholar 

  189. Rabban JT, Longacre T. Immunohistology of the female genital tract. In: Dabbs DJ, editor. Diagnostic immunohistochemistry—theranostic and genomic applications. 4th ed. Philadelphia, PA: Elsevier Saunders; 2014. p. 653–709.

    Google Scholar 

  190. Kao CS, Idrees MT, Young RH, Ulbright TM. Solid pattern yolk sac tumor: a morphologic and immunohistochemical study of 52 cases. Am J Surg Pathol. 2012;36(3):360–7.

    PubMed  Google Scholar 

  191. Kurihara S, Oda Y, Ohishi Y, et al. Endometrial stromal sarcomas and related high-grade sarcomas: immunohistochemical and molecular genetic study of 31 cases. Am J Surg Pathol. 2008;32(8):1228–38.

    PubMed  Google Scholar 

  192. Zhao C, Vinh TN, McManus K, et al. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol. 2009;33(3):354–66.

    PubMed  Google Scholar 

  193. Kaspar HG, Crum CP. The utility of immunohistochemistry in the differential diagnosis of gynecologic disorders. Arch Pathol Lab Med. 2015;139(1):39–54.

    PubMed  Google Scholar 

  194. Mayr D, Kaltz-Wittmer C, Arbogast S, Amann G, Aust DE, Diebold J. Characteristic pattern of genetic aberrations in ovarian granulosa cell tumors. Mod Pathol. 2002;15:951–7.

    CAS  PubMed  Google Scholar 

  195. Lin YS, Eng HL, Jan YJ, et al. Molecular cytogenetics of ovarian granulosa cell tumors by comparative genomic hybridization. Gynecol Oncol. 2005;97(1):68–73.

    CAS  PubMed  Google Scholar 

  196. Alexiadis M, Rowley SM, Chu S, Leung DTH, Stewart CJR, Amarasinghe KC, Campbell IG, Fuller PJ. Mutational landscape of ovarian adult granulosa cell tumors from whole exome and targeted TERT promoter sequencing. Mol Cancer Res. 2019;17(1):177–85. https://doi.org/10.1158/1541-7786.MCR-18-0359. Epub 30 Aug 2018.

    Article  CAS  PubMed  Google Scholar 

  197. Lee CH, Nucci MR. Endometrial stromal sarcoma—the new genetic paradigm. Histopathology. 2015;67(1):1–19. https://doi.org/10.1111/his.12594. Epub 22 Jan 2015.

    Article  PubMed  Google Scholar 

  198. Barel O, Qian C, Manolitsas T. Primary leiomyosarcoma of the omentum presenting as an ovarian carcinoma, case report and review of the literature. Gynecol Oncol Rep. 2016;17:75–8. https://doi.org/10.1016/j.gore.2016.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Harlan LC, Eisenstein J, Russell MC, Stevens JL, Cardona K. Gastrointestinal stromal tumors: treatment patterns of a population-based sample. J Surg Oncol. 2015;111:702–7.

    PubMed  Google Scholar 

  200. Back JA, Choi MG, Ju UC. A case of advanced-stage endometrial stromal sarcoma of the ovary arising from endometriosis. Obstet Gynecol Sci. 2016;59:323–7.

    PubMed  PubMed Central  Google Scholar 

  201. Lee CH, Ou WB, Marino-Enriquez A, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109:929–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Chang KL, Crabtree GS, Lim-Tan SK, et al. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol. 1990;14:415–38.

    CAS  PubMed  Google Scholar 

  203. Evans HL. Endometrial stromal sarcoma and poorly differentiated endometrial sarcoma. Cancer. 1982;50:2170–82.

    CAS  PubMed  Google Scholar 

  204. Hendrickson MR, Tavassoli FA, Kempson RL. Mesenchymal tumours and related lesions. In: World Health Organization classification of tumours pathology and genetics of tumours of the breast and female genital organ. Lyon: IARC Press; 2003.

    Google Scholar 

  205. Norris HJ, Taylor HB. Mesenchymal tumors of the uterus. I. A clinical and pathological study of 53 endometrial stromal tumors. Cancer. 1966;19:755–66.

    CAS  PubMed  Google Scholar 

  206. Chu PG, Arber DA, Weiss LM, et al. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14:465–71.

    CAS  PubMed  Google Scholar 

  207. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39:273–8.

    CAS  PubMed  Google Scholar 

  208. Lee CH, Marino-Enriquez A, Ou W, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36:641–53.

    PubMed  Google Scholar 

  209. Soslow RA, Isacson C, Zaloudek C. Immunohistology of the female genital tract. In: Diagnostic immunohistochemistry. 2nd ed. Edinburgh: Churcill Livingstone; 2006. p. 637–98.

    Google Scholar 

  210. Lee CH, Ali RH, Rouzbahman M, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:1562–70.

    PubMed  PubMed Central  Google Scholar 

  211. Caudell JJ, Deavers MT, Slomovitz BM, et al. Imatinib mesylate (gleevec)--targeted kinases are expressed in uterine sarcomas. Appl Immunohistochem Mol Morphol. 2005;13:167–70.

    CAS  PubMed  Google Scholar 

  212. Cossu-Rocca P, Contini M, Uras MG, et al. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis. Int J Gynecol Pathol. 2012;31:570–9.

    CAS  PubMed  Google Scholar 

  213. Klein WM, Kurman RJ. Lack of expression of c-kit protein (CD117) in mesenchymal tumors of the uterus and ovary. Int J Gynecol Pathol. 2003;22:181–4.

    PubMed  Google Scholar 

  214. Nakayama M, Mitsuhashi T, Shimizu Y, et al. Immunohistochemical evaluation of KIT expression in sarcomas of the gynecologic region. Int J Gynecol Pathol. 2006;25:70–6.

    PubMed  Google Scholar 

  215. Lee CH, Liang CW, Espinosa I. The utility of discovered on gastrointestinal stromal tumor 1 (DOG1) antibody in surgical pathology-the GIST of it. Adv Anat Pathol. 2010;17:222–32.

    CAS  PubMed  Google Scholar 

  216. Kurman RJ, Carcangiu ML, Herrington CS, et al. Tumours of the uterine corpus—mesenchymal tumours. In: World Health Organization classification of tumours of female reproductive organs. Lyon: IARC Press; 2014.

    Google Scholar 

  217. Masand RP, Euscher ED, Deavers MT, Malpica A. Endometrioid stromal sarcoma: a clinicopathologic study of 63 cases. Am J Surg Pathol. 2013;37(11):1635–47.

    PubMed  Google Scholar 

  218. Clair K, Wolford J, Veran-Taguibao S, Kim G, Eskander RN. Primary low-grade endometrial stromal sarcoma of the omentum. Gynecol Oncol Rep. 2017;21:119–21. https://doi.org/10.1016/j.gore.2017.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ho RSL, Chan GCF, Ha SY, Ip PP. Endometriosis-associated serous borderline tumor and endometrial stromal sarcoma of the ovary: a report of a rare lesion in an infant. Int J Gynecol Pathol. 2012;31(1):98–102.

    PubMed  Google Scholar 

  220. Masand RP. Unusual presentations of gynecologic tumors: primary, extrauterine, low-grade endometrioid stromal sarcoma. Arch Pathol Lab Med. 2018;142:536–41.

    CAS  PubMed  Google Scholar 

  221. Young RH, Prat J, Scully RE. Endometrioid stromal sarcomas of the ovary: a clinicopathologic analysis of 23 cases. Cancer. 1984;53(5):1143–55.

    CAS  PubMed  Google Scholar 

  222. Oliva E, Egger JF, Young RH. Primary endometrioid stromal sarcoma of the ovary: a clinicopathologic study of 27 cases with morphologic and behavioral features similar to those of uterine low-grade endometrial stromal sarcoma. Am J Surg Pathol. 2014;38(3):305–15.

    PubMed  Google Scholar 

  223. Chang KL, Crabtree GS, Lim-Tan SK, Kempson RL, Hendrickson MR. Primary extrauterine endometrial stromal neoplasms: a clinicopathologic study of 20 cases and a review of the literature. Int J Gynecol Pathol. 1993;12(4):282–96.

    CAS  PubMed  Google Scholar 

  224. Baratti D, Pennacchioli E, Kusamura S, et al. Peritoneal sarcomatosis: is there a subset of patients who may benefit from cytoreductive surgery and hyperthermic intraperitoneal chemotherapy? Ann Surg Oncol. 2010;17:3220–8.

    PubMed  Google Scholar 

  225. Ip PP, Cheung AN. Pathology of uterine leiomyosarcomas and smooth muscle tumours of uncertain malignant potential. Best Pract Res Clin Obstet Gynaecol. 2011;25(6):691–704. https://doi.org/10.1016/j.bpobgyn.2011.07.003. Epub 23 Aug 2011.

    Article  PubMed  Google Scholar 

  226. Mittal KR, Chen F, Wei JJ, et al. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol. 2009;22:1303–11.

    CAS  PubMed  Google Scholar 

  227. Yanai H, Wani Y, Notohara K, et al. Uterine leiomyosarcoma arising in leiomyoma: clinicopathological study of four cases and literature review. Pathol Int. 2010;60:506–9.

    PubMed  Google Scholar 

  228. Zhang P, Zhang C, Hao J, et al. Use of X-chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma and leiomyosarcoma. Hum Pathol. 2006;37:1350–6.

    CAS  PubMed  Google Scholar 

  229. Mittal K, Popiolek D, Demopoulos RI. Uterine myxoid leiomyosarcoma within a leiomyoma. Hum Pathol. 2000;31:398–400.

    CAS  PubMed  Google Scholar 

  230. Mittal K, Joutovsky A. Areas with benign morphologic and immunohistochemical features are associated with some uterine leiomyosarcomas. Gynecol Oncol. 2007;104:362–5.

    CAS  PubMed  Google Scholar 

  231. Ip PP, Tse KY, Tam KF. Uterine smooth muscle tumors other than the ordinary leiomyomas and leiomyosarcomas: a review of selected variants with emphasis on recent advances and unusual morphology that may cause concern for malignancy. Adv Anat Pathol. 2010;17:91–112.

    PubMed  Google Scholar 

  232. Ip PP, Lam KW, Cheung CL, et al. Tranexamic acid-associated necrosis and intralesional thrombosis of uterine leiomyomas: a clinicopathologic study of 147 cases emphasizing the importance of drug-induced necrosis and early infarcts in leiomyomas. Am J Surg Pathol. 2007;31:1215–24.

    PubMed  Google Scholar 

  233. Gao HG, LiVolsi VA, Zhang PJ. Utility of trichrome and reticulin stains in characterizing necroses in uterine smooth muscle tumors [abstract]. Mod Pathol. 2007;20:198A.

    Google Scholar 

  234. Hendrickson MR, Tavassoli FA, Kempson RL, et al. Mesenchymal tumours and related lesions. In: Tavassoli FA, Devilee P, editors. World Health Organization classification of tumours: pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 236–43.

    Google Scholar 

  235. Major FJ, Blessing JA, Silverberg SG, et al. Prognostic factors in early-stage uterine sarcoma. A Gynecologic Oncology Group study. Cancer. 1993;71(4 Suppl):1702–9.

    CAS  PubMed  Google Scholar 

  236. Oliva E, Young RH, Amin MB, et al. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26:403–12.

    PubMed  Google Scholar 

  237. Rizeq MN, van de Rijn M, Hendrickson MR, et al. A comparative immunohistochemical study of uterine smooth muscle neoplasms with emphasis on the epithelioid variant. Hum Pathol. 1994;25:671–7.

    CAS  PubMed  Google Scholar 

  238. de Leval L, Waltregny D, Boniver J, et al. Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol. 2006;30:319–27.

    PubMed  Google Scholar 

  239. Liang J, Wu L, Xiao H, et al. Use of myocardin in the classification of mesenchymal tumors of the uterus. Int J Gynecol Pathol. 2010;29:55–62.

    PubMed  Google Scholar 

  240. Hall KL, Teneriello MG, Taylor RR, et al. Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol. 1997;65:330–5.

    CAS  PubMed  Google Scholar 

  241. Jeffers MD, Farquharson MA, Richmond JA, et al. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177:65–70.

    CAS  PubMed  Google Scholar 

  242. O’Neill CJ, McBride HA, Connolly LE, et al. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50:851–8.

    PubMed  Google Scholar 

  243. Blom R, Guerrieri C, Stal O, et al. Leiomyosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53, and mdm-2 analysis of 49 cases. Gynecol Oncol. 1998;68:54–61.

    CAS  PubMed  Google Scholar 

  244. de Vos S, Wilczynski SP, Fleischhacker M, et al. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54:205–8.

    CAS  PubMed  Google Scholar 

  245. Leitao MM, Soslow RA, Nonaka D, et al. Tissue microarray immunohistochemical expression of estrogen, progesterone, and androgen receptors in uterine leiomyomata and leiomyosarcoma. Cancer. 2004l;101:1455–62.

    CAS  PubMed  Google Scholar 

  246. Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor, and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32:984–7.

    CAS  PubMed  Google Scholar 

  247. Zhai YL, Kobayashi Y, Mori A, et al. Expression of steroid receptors, Ki-67, and p53 in uterine leiomyosarcomas. Int J Gynecol Pathol. 1999;18:20–8.

    CAS  PubMed  Google Scholar 

  248. Rushing RS, Shajahan S, Chendil D, et al. Uterine sarcomas express KIT protein but lack mutation(s) in exon11or17 of c-KIT. Gynecol Oncol. 2003;91:9–14.

    CAS  PubMed  Google Scholar 

  249. Lasota J, Jasinski M, Sarlomo-Rikala M, et al. Mutations in exon11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol. 1999;154:53–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Serrano C, Mackintosh C, Herrero D, et al. Imatinib is not a potential alternative treatment for uterine leiomyosarcoma. Clin Cancer Res. 2005;11:4977–9, author reply 9–80.

    CAS  PubMed  Google Scholar 

  251. D’Angelo E, Prat J. Uterine sarcomas: a review. Gynecol Oncol. 2010;116:131–9.

    PubMed  Google Scholar 

  252. Jones MW, Norris HJ. Clinicopathologic study of 28 uterine leiomyosarcomas with metastasis. Int J Gynecol Pathol. 1995;14:243–9.

    CAS  PubMed  Google Scholar 

  253. Evans HL, Chawla SP, Simpson C, et al. Smooth muscle neoplasms of the uterus other than ordinary leiomyoma. A study of 46 cases, with emphasis on diagnostic criteria and prognostic factors. Cancer. 1988;62:2239–47.

    CAS  PubMed  Google Scholar 

  254. Tirumani SH, Deaver P, Shinagare AB, et al. Metastatic pattern of uterine leiomyosarcoma: retrospective analysis of the predictors and outcome in 113 patients. J Gynecol Oncol. 2014;25(4):306–12. https://doi.org/10.3802/jgo.2014.25.4.306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sugarbaker P, Ihemelandu C, Bijelic L. Cytoreductive surgery and HIPEC as a treatment option for laparoscopic resection of uterine leiomyosarcoma with morcellation: early results. Ann Surg Oncol. 2016;23(5):1501–7.

    PubMed  Google Scholar 

  256. Oduyebo T, Rauh-Hain AJ, Meserve EE, Seidman MA, Hinchcliff E, George S, Quade B, Nucci MR, Del Carmen MG, Muto MG. The value of re-exploration in patients with inadvertently morcellated uterine sarcoma. Gynecol Oncol. 2014;132(2):360–5.

    PubMed  Google Scholar 

  257. Tanimura A, Cho T, Nohara M, et al. Primary leiomyosarcoma of the omentum. Kurume Med J. 1980;27:101–5.

    CAS  PubMed  Google Scholar 

  258. Tsurumi H, Okada S, Koshino Y, Oyama M, Higaki H, Shimokawa K, Yamauchi O, Moriwaki H, Muto Y. A case of leiomyoblastoma (epithelioid leiomyosarcoma) of the greater omentum. Gastroenterol Jpn. 1991;26(3):370–5.

    CAS  PubMed  Google Scholar 

  259. Mahon DE, Carp NZ, Goldhahn RT, et al. Primary leiomyosarcoma of the greater omentum: case report and review of the literature. Am Surg. 1993;59:160–3.

    CAS  PubMed  Google Scholar 

  260. Brañes A, Bustamante C, Valbuena J, Pimentel F, Quezada N. Primary leiomyosarcoma of the greater omentum: a case report. Int J Surg Case Rep. 2016;28:317–20. https://doi.org/10.1016/j.ijscr.2016.10.025. Epub 14 Oct 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Ishida H, Ishida J. Primary tumours of the greater omentum. Eur Radiol. 1998;8(9):1598–601.

    CAS  PubMed  Google Scholar 

  262. Scwartz RW, Reames M, McGrath PC, et al. Primary solid neoplasms of the greater omentum. Surgery. 1991;109:543–9.

    Google Scholar 

  263. Stout AP, Hendry J, Purdie FJ. Primary solid tumors of the greater omentum. Cancer. 1963;16:231–43.

    CAS  PubMed  Google Scholar 

  264. Fattar S, Morton PCG, Schulman A, et al. Radiological diagnosis of primary greater omental mass lesion. Clin Radiol. 1981;32:325–30.

    Google Scholar 

  265. Weinberger HA, Ahmed MS. Mesenchymal solid tumors of the omentum. Surgery. 1997;82:754–9.

    Google Scholar 

  266. Virchow R. Die Krankhaften Geschwülste. Berlin: Springer; 1863.

    Google Scholar 

  267. Ewing J. Neoplatic diseases. Philadelphia, PA: W.B. Saunders; 1919.

    Google Scholar 

  268. Zhao S, Bellone S, Lopez S, et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113:12238–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Wada H, Enomoto T, Fujita M, et al. Molecular evidence that most but not all carcinosarcomas of the uterus are combination tumours. Cancer Res. 1997;57:5379–85.

    CAS  PubMed  Google Scholar 

  270. Nieto MA, Huang RY, Jackson RA, et al. Emt: 2016. Cell. 2016;166:21–45.

    CAS  PubMed  Google Scholar 

  271. Pang A, Carbini M, Moreira AL, Maki RG. Carcinosarcomas and related cancers: tumors caught in the act of epithelial-mesenchymal transition. J Clin Oncol. 2018;36(2):210–6.

    CAS  PubMed  Google Scholar 

  272. Banik T, Halder D, Gupta N, Dey P. Malignant mixed Mullerian tumor of the uterus: diagnosis of a case by fine-needle aspiration cytology and review of literature. Diagn Cytopathol (in press).

    Google Scholar 

  273. Ahuja A, Safaya R, Prakash G, Kumar L, Shukla NK. Primary mixed mullerian tumor of the vagina—a case report with review of the literature. Pathol Res Pract. 2011;207(4):253–5.

    PubMed  Google Scholar 

  274. Sharma NK, Sorosky JI, Bender D, Fletcher MS, Sood AK. Malignant mixed mullerian tumor (MMMT) of the cervix. Gynecol Oncol. 2005;97(2):442–5.

    PubMed  Google Scholar 

  275. Duman BB, Kara IO, Gunaldi M, Ercolak V. Malignant mixed Mullerian tumor of the ovary with two cases and review of the literature. Arch Gynecol Obstet. 2011;283(6):1363–8.

    PubMed  Google Scholar 

  276. Shen YM, Xie YP, Xu L, et al. Malignant mixed mullerian tumor of the fallopian tube: report of two cases and review of literature. Arch Gynecol Obstet. 2010;281(6):1023–8.

    PubMed  Google Scholar 

  277. Arend R, Doneza JA, Wright JD. Uterine carcinosarcoma. Curr Opin Oncol. 2011;23:531.

    PubMed  Google Scholar 

  278. Kurman RJ, Carcangiu ML, Herrington CS, et al. WHO classification of tumours of female reproductive organs. 4th ed. Geneva: World Health Organization; 2014.

    Google Scholar 

  279. de Jong RA, Nijman HW, Wijbrandi TF, Reyners AK, Boezen HM, Hollema H. Molecular markers and clinical behavior of uterine carcinosarcomas: focus on the epithelial tumor component. Mod Pathol (in press).

    Google Scholar 

  280. Arora P, Rao S, Khurana N, Talwar D, Tanwar R. Malignant mixed Mullerian tumor of broad ligament with synchronous ovarian and endometrial carcinoma: a rare association. J Cancer Res Ther. 2011;7(1):88–91.

    PubMed  Google Scholar 

  281. McCluggage WG. Uterine carcinosarcomas (malignant mixed Mullerian tumors) are metaplastic carcinomas. Int J Gynecol Cancer. 2002;12(6):687–90.

    CAS  PubMed  Google Scholar 

  282. El-Nashar SA, Mariani A. Uterine carcinosarcoma. Clin Obstet Gynecol. 2011;54(2):292–304.

    PubMed  Google Scholar 

  283. N’Kanza AL, Jobanputra S, Farmer P, Lovecchio J, Yelon JA, Rudloff U. Central nervous system involvement from malignant mixed Mullerian tumor (MMMT) of the uterus. Arch Gynecol Obstet. 2005;273(1):63–8.

    PubMed  Google Scholar 

  284. Jin Z, Ogata S, Tamura G, et al. Carcinosarcomas (malignant mullerian mixed tumors) of the uterus and ovary: a genetic study with special reference to histogenesis. Int J Gynecol Pathol. 2003;22(4):368–73.

    PubMed  Google Scholar 

  285. Kuyumcuollu U, Kale A. Homologous type of malignant mixed Mullerian tumor of the uterus presenting as a cervical mass. J Chin Med Assoc. 2009;72(10):533–5.

    Google Scholar 

  286. Niculescu M, Simionescu C, Novac L, Mogoanta L, Stanescu RM. The uterine carcinosarcoma—a case report. Romanian J Morphol Embryol. 2007;48(4):431–5.

    Google Scholar 

  287. Doss LL, Llorens AS, Henriquez EM. Carcinosarcoma of the uterus: a 40-year experience from the state of Missouri. Gynecol Oncol. 1984;18(1):43–53.

    CAS  PubMed  Google Scholar 

  288. Kernochan LE, Garcia RL. Carcinosarcomas (malignant mixed mullerian tumor) of the uterus: advances in elucidation of biologic and clinical characteristics. J Natl Compr Cancer Netw. 2009;7(5):550–7.

    CAS  Google Scholar 

  289. Genever AV, Abdi S. Can MRI predict the diagnosis of endometrial carcinosarcoma? Clin Radiol. 2011;66(7):621–4.

    CAS  PubMed  Google Scholar 

  290. Ohguri T, Aoki T, Watanabe H, et al. MRI findings including gadolinium-enhanced dynamic studies of malignant, mixed mesodermal tumors of the uterus: differentiation from endometrial carcinomas. Eur Radiol. 2002;12(11):2737–42.

    PubMed  Google Scholar 

  291. Brown L. Pathology of uterine malignancies. Clin Oncol. 2008;20(6):433–47.

    CAS  Google Scholar 

  292. Kajo K, Zubor P, Spacek J, Ryska A. Carcinosarcoma of the uterus with melanocytic differentiation. Pathol Res Pract. 2007;203(10):753–8.

    PubMed  Google Scholar 

  293. Buza N, Tavassoli FA. Comparative analysis of P16 and P53 expression in uterine malignant mixed mullerian tumors. Int J Gynecol Pathol. 2009;28(6):514–21.

    PubMed  Google Scholar 

  294. Kanthan R, Senger JLB, Diudea D. Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins. World J Surg Oncol. 2010;8, article 60.

    Google Scholar 

  295. Huang GS, Chiu LG, Gebb JS, et al. Serum CA125 predicts extrauterine disease and survival in uterine carcinosarcoma. Gynecol Oncol. 2007;107(3):513–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Livasy CA, Reading FC, Moore DT, Boggess JF, Lininger RA. EGFR expression and HER2/neu overexpression/amplification in endometrial carcinosarcoma. Gynecol Oncol. 2006;100(1):101–6.

    CAS  PubMed  Google Scholar 

  297. Raspollini MR, Susini T, Amunni G, et al. COX-2, c-KIT and HER-2/neu expression in uterine carcinosarcomas: prognostic factors or potential markers for targeted therapies? Gynecol Oncol. 2005;96(1):159–67.

    CAS  PubMed  Google Scholar 

  298. Sawada M, Tsuda H, Kimura M, et al. Different expression patterns of KIT, EGFR, and HER-2 (c-erbB-2) oncoproteins between epithelial and mesenchymal components in uterine carcinosarcoma. Cancer Sci. 2003;94(11):986–91.

    CAS  PubMed  Google Scholar 

  299. Swisher EM, Gown AM, Skelly M, et al. The expression of epidermal growth factor receptor, HER-2/Neu, p53, and Ki-67 antigen in uterine malignant mixed mesodermal tumors and adenosarcoma. Gynecol Oncol. 1996;60(1):81–8.

    CAS  PubMed  Google Scholar 

  300. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    PubMed  Google Scholar 

  301. del Carmen MG, Birrer M, Schorge JO. Carcinosarcoma of the ovary: a review of the literature. Gynecol Oncol. 2012;125:271–7.

    PubMed  Google Scholar 

  302. Schipf A, Mayr D, Kichner T, et al. Molecular genetic aberrations of ovarian and uterine carcinosarcomas—a CGH and FISH study. Virchows Arch. 2008;452:259–68.

    CAS  PubMed  Google Scholar 

  303. Sonoda Y, Saigo PE, Gederici MG, et al. Carcinosarcoma of the ovary in a patient with germline BRCA2 mutation: evidence for monoclonal origin. Gynecol Oncol. 2000;76:226–9.

    CAS  PubMed  Google Scholar 

  304. Ng JS, Han AC, Edelson MI, Rosenblum NG. Oncoprotein profiles of primary peritoneal malignant mixed mullerian tumors. Int J Gynecol Cancer. 2003;13:870–4.

    CAS  PubMed  Google Scholar 

  305. Gallardo A, Matias-Guiu X, Lagarda H, et al. Malignant mullerian mixed tumor arising from ovarian serous carcinoma: a clinicopathologic and molecular study of two cases. Int J Gynecol Pathol. 2002;21:268–72.

    PubMed  Google Scholar 

  306. Brown E, Stewart M, Rye T, Al-Nafussi A, et al. Carcinosarcoma of the ovary: 19 years of prospective data from a single center. Cancer. 2004;100(10):2148–53.

    PubMed  Google Scholar 

  307. Sood AK, Sorosky JI, Gelder MS, Buller RE, et al. Primary ovarian sarcoma—analysis of prognostic variables and the role of surgical cytoreduction. Cancer. 1998;82:1731–7.

    CAS  PubMed  Google Scholar 

  308. Chang J, Sharpe JC, A’Hern RP, Fisher C, et al. Carcinosarcoma of the ovary: incidence, prognosis, treatment and survival of patients. Ann Oncol. 1995;6(8):755–8.

    CAS  PubMed  Google Scholar 

  309. Morrow CP, d’Ablaing G, Brady LW, Blessing JA, Hreshchyshin MM. A clinical and pathologic study of 30 cases of malignant mixed mullerian epithelial and mesenchymal ovarian tumors: a Gynecologic Oncology Group study. Gynecol Oncol. 1984;18:278–92.

    CAS  PubMed  Google Scholar 

  310. Ariyoshi K, Kawauchi S, Kaku T, Nakano H, Tsuneyoshi M. Prognostic factors in ovarian carcinosarcoma: a clinicopathological and immunohistochemical analysis of 23 cases. Histopathology. 2000;37:427–36.

    CAS  PubMed  Google Scholar 

  311. Althavale R, Thomakos N, Godrey K, et al. The effect of epithelial and stromal tumor components on FIGO stages III and IV ovarian carcinosarcomas treated with primary surgery and chemotherapy. Int J Gynecol Cancer. 2007;17:1025–30.

    Google Scholar 

  312. Nayha V, Stenback F. Angiogenesis and expression of angiogenic agents in uterine and ovarian carcinosarcomas. APMIS. 2008;116:107–17.

    PubMed  Google Scholar 

  313. Eichhorn JH, Young RH, Clement PB, Scully RE. Mesodermal (Müllerian) adenosarcoma of the ovary. A clinicopathologic analysis of 40 cases and a review of the literature. Am J Surg Pathol. 2002;26:1243–58.

    PubMed  Google Scholar 

  314. Chen X, Arend R, Hamele-Bena D, Tergas AI, Hawver M, Tong GX, Wright TC, Wright JD. Uterine carcinosarcomas: clinical, histopathologic and immunohistochemical characteristics. Int J Gynecol Pathol. 2017;36(5):412–9. https://doi.org/10.1097/PGP.0000000000000346.

    Article  CAS  PubMed  Google Scholar 

  315. Mok JE, Kim YM, Jung MH, Kim KR, Kim DY, Kim JH, et al. Malignant mixed mullerian tumors of the ovary: experience with cytoreductive surgery and platinum-based combination chemotherapy. Int J Gynecol Cancer. 2006;16:101–5.

    CAS  PubMed  Google Scholar 

  316. Boucher D, Tetu B. Morphologic prognostic factors of malignant mixed mullerian tumors of the ovary: a clinicopathologic study of 15 cases. Int J Gynecol Pathol. 1994;13(1):22–8.

    CAS  PubMed  Google Scholar 

  317. Menon S, Deodhar K, Rekhi B, Dhake R, Gupta S, Ghosh J, Maheshwari A, Mahantshetty U, Shrivastva S, Budukh A, Tongaonkar HB, Kerkar R. Clinico-pathological spectrum of primary ovarian malignant mixed mullerian tumors (OMMMT) from a tertiary cancer institute: a series of 27 cases. Indian J Pathol Microbiol. 2013;56:365–71.

    PubMed  Google Scholar 

  318. Boyd J. Molecular genetics of gynecologic cancer. In: Morrow CP, Curtin JP, editors. Synopsis of gynecologic oncology. 5th ed. New York: Churchill Livingstone; 1998. p. 515–31.

    Google Scholar 

  319. Szukala SA, Marks JR, Burchette JL, et al. Co-expression of p53 by epithelial and stromal elements in carcinosarcoma of the female genital tract: an immunohistochemical study of 19 cases. Int J Gynecol Cancer. 1999;9:131–6.

    PubMed  Google Scholar 

  320. Yemelyanova A, Ji H, Shih IM, et al. Utility of p16 expression for distinction uterine serous carcinoma from endometrial endometrioid and endocervical adenocarcinoma. Immunohistochemical analysis of 201 cases. Am J Surg Pathol. 2009;33:1504–14.

    PubMed  Google Scholar 

  321. Meis JM, Lawrence WD. The immunohistochemical profile of malignant mixed mullerian tumor. Overlap with endometrial adenocarcinoma. Am J Clin Pathol. 1990;94:1–7.

    CAS  PubMed  Google Scholar 

  322. Costa MJ, Guinee D Jr. CD34 immunohistochemistry in female genital tract carcinosarcoma (malignant mixed mullerian tumors) supports a dominant role of the carcinomatous component. Appl Immunohistochem Mol Morphol. 2000;8:293–9.

    CAS  PubMed  Google Scholar 

  323. Holmes BJ, Gown AM, Vang R, et al. PAX8 expression in uterine malignant mixed mesodermal tumor (carcinosarcoma). Int J Gynecol Pathol. 2014;33:425–31.

    CAS  PubMed  Google Scholar 

  324. Hendrickson M, Ross J, Eifel P, Martinez A, Kempson R. Uterine papillary serous carcinoma: a highly malignant form of endometrial adenocarcinoma. Am J Surg Pathol. 1982;6(2):93–108.

    CAS  PubMed  Google Scholar 

  325. Lee KR, Tavassoli FA, Prat J. Surface epithelial stromal tumors of the ovary and peritoneum. In: World Health Organization classification of tumours. Pathology and genetics of tumors of the breast and female genital organs. Lyon: IARC Press; 2003. p. 117–61.

    Google Scholar 

  326. El-Sahwi KS, Schwartz PE, Santin AD. Development of targeted therapy in uterine serous carcinoma, a biologically aggressive variant of endometrial cancer. Expert Rev Anticancer Ther. 2012;12(1):41–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Weinstein JN, et al. Cancer Genome Atlas Research Network the Cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

    PubMed  PubMed Central  Google Scholar 

  328. Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell. 2017;31(3):411–23. https://doi.org/10.1016/j.ccell.2017.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D, Angiuoli SV, Sausen M, Kann L, Shukla M, et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006.

    CAS  PubMed  Google Scholar 

  330. Zhao S, Bellone S, Lopez S, Thakral D, Schwab C, English DP, et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A. 2016;113(43):12238–43. https://doi.org/10.1073/pnas.1614120113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Fukuda S, Fujiwara Y, Wakasa T, Kitani K, Tsujie M, Yukawa M, Ohta Y, Inoue M. Giant gastric gastrointestinal stromal tumor with severe peritoneal dissemination controlled by imatinib therapy following debulking surgery: a case report. J Med Case Rep. 2017;11(1):33. https://doi.org/10.1186/s13256-017-1215-5.

    Article  PubMed  PubMed Central  Google Scholar 

  332. Patil DT, Rubin BP. Gastrointestinal stromal tumor: advances in diagnosis and management. Arch Pathol Lab Med. 2011;135(10):1298–310.

    CAS  PubMed  Google Scholar 

  333. Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O’Leary TJ, Remotti H, Rubin BP. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol. 2002;33:459–65.

    PubMed  Google Scholar 

  334. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006;130:1466–78.

    CAS  PubMed  Google Scholar 

  335. Rubin BP, Blanke CD, Demetri GD, Dematteo RP, Fletcher CD, Goldblum JR, Lasota J, Lazar A, Maki RG, Miettinen M, et al. Protocol for the examination of specimens from patients with gastrointestinal stromal tumor. Arch Pathol Lab Med. 2010;134:165–70.

    PubMed  Google Scholar 

  336. Sanchez-Hidalgo JM, Duran-Martinez M, Molero-Payan R, Rufian-Peña S, Arjona-Sanchez A, Casado-Adam A, Cosano-Alvarez A, Briceño-Delgado J. Gastrointestinal stromal tumors: a multidisciplinary challenge. World J Gastroenterol. 2018;24(18):1925–41. https://doi.org/10.3748/wjg.v24.i18.1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Martin-Broto J, Martinez-Marín V, Serrano C, Hindi N, López-Guerrero JA, Bisculoa M, Ramos-Asensio R, Vallejo-Benítez A, Marcilla-Plaza D, González-Cámpora R. Gastrointestinal stromal tumors (GISTs): SEAP-SEOM consensus on pathologic and molecular diagnosis. Clin Transl Oncol. 2017;19:536–45.

    CAS  PubMed  Google Scholar 

  338. Corless CL, Ballman KV, Antonescu CR, Kolesnikova V, Maki RG, Pisters PW, Blackstein ME, Blanke CD, Demetri GD, Heinrich MC, et al. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9001 trial. J Clin Oncol. 2014;32:1563–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Reichardt P, Hogendoorn PC, Tamborini E, Loda M, Gronchi A, Poveda A, Schöffski P. Gastrointestinal stromal tumors I: pathology, pathobiology, primary therapy, and surgical issues. Semin Oncol. 2009;36:290–301.

    CAS  PubMed  Google Scholar 

  340. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865–78.

    CAS  PubMed  Google Scholar 

  341. Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology. 2008;53:245–66.

    CAS  PubMed  Google Scholar 

  342. Blay JY, Heinrich MC, Hohenberger P, Casali PG, Rutkowski P, Serrano-Garcia C, Jones RL, Hall KS, Eckardt JR, von Mehren M. A randomized, double-blind, placebo-controlled, phase III study of crenolanib in advanced or metastatic GIST patients bearing a D842V mutation in PDGFRA: the CrenoGIST study. J Clin Oncol. 2017;35. Published online before print.

    Google Scholar 

  343. Hostein I, Faur N, Primois C, Boury F, Denard J, Emile JF, Bringuier PP, Scoazec JY, Coindre JM. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol. 2010;133:141–8.

    CAS  PubMed  Google Scholar 

  344. Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, Gaal J, Dahia PL, Liegl B, Ball ER, Raygada M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A. 2011;108:314–8.

    CAS  PubMed  Google Scholar 

  345. Ricci R. Syndromic gastrointestinal stromal tumors. Hered Cancer Clin Pract. 2016;14:15.

    PubMed  PubMed Central  Google Scholar 

  346. Casali PG, Zalcberg J, Le Cesne A, Reichardt P, Blay JY, Lindner LH, Judson IR, Schöffski P, Leyvraz S, Italiano A, et al. Ten-year progression-free and overall survival in patients with unresectable or metastatic GI stromal tumors: long-term analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Trials Group Intergroup phase III randomized trial on imatinib at two dose levels. J Clin Oncol. 2017;35:1713–20.

    PubMed  Google Scholar 

  347. Sánchez Hidalgo JM, Muñoz Casares FC, Rufian Peña S, Naranjo Torres A, Ciria Bru R, Briceño Delgado J, López Cillero P. [Gastrointestinal stromal tumors (GIST): factors predictive of survival after R0-cytoreduction]. Rev Esp Enferm Dig. 2007;99:703–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Glehen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Sinukumar, S., Jumale, N., Parikh, L., Bhatt, A., Glehen, O. (2020). Rare Peritoneal Tumours: Histopathological Diagnosis and Patterns of Peritoneal Dissemination. In: Glehen, O., Bhatt, A. (eds) Pathology of Peritoneal Metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3773-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3772-1

  • Online ISBN: 978-981-15-3773-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics