Skip to main content

Asthma: Pathophysiology, Current Status, and Therapeutics

  • Chapter
  • First Online:
Chronic Lung Diseases

Abstract

Asthma is a chronic disorder of the airways characterized by variable and recurring airway inflammation, bronchial hyperresponsiveness, bronchoconstriction, vasodilatation, airway edema, and activation of sensory nerve endings. It is a serious health problem globally affecting 334 million people across all the age groups imposing a substantial burden on patient’s quality of life, family, and community. Patients with asthma are often at the risk of acute exacerbations, if the symptoms are not managed properly, and it needs to be customized based on the level of symptom control, phenotypic characteristics, effectiveness of available medications, safety, cost-effectiveness, etc. Since the underlying pathophysiological mechanisms and symptoms of the disease are complicated, there is a dire need to understand the pathology of the disease for better management of symptoms and development of novel therapeutic approaches. Here, we have presented a comprehensive review of the disease, its causes, epidemiology, pathophysiology, current drug treatments, and latest recommendations from Global Initiative for Asthma for the management of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akinbami LJ, Moorman JE, Liu X et al (2012) NCHS Data Brief (94):1–8

    Google Scholar 

  2. Akinbami LJ, Moorman JE, Liu X (2011) National health statistics reports. National Center for Health Statistics, Hyattsville, MD, pp 2005–2009

    Google Scholar 

  3. National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (2007) National Asthma Education and Prevention Program Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma—Summary report 2007. National Institutes of Health (NIH) Publication (08-5846)

    Google Scholar 

  4. Bateman ED et al (2008) Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J 31(1):143–178

    PubMed  CAS  Google Scholar 

  5. Martinez FD et al (1995) Asthma and wheezing in the first six years of life. N Engl J Med 332(3):133–138

    PubMed  CAS  Google Scholar 

  6. Lowe LA et al (2005) Wheeze phenotypes and lung function in preschool children. Am J Respir Crit Care Med 171(3):231–237

    PubMed  Google Scholar 

  7. Young S et al (2000) The association between early life lung function and wheezing during the first 2 yrs of life. Eur Respir J 15(1):151–157

    PubMed  CAS  Google Scholar 

  8. Bauer BA et al (1997) Incidence and outcomes of asthma in the elderly: a population-based study in Rochester, Minnesota. Chest 111(2):303–310

    PubMed  CAS  Google Scholar 

  9. Butland BK, Strachan DP (2007) Asthma onset and relapse in adult life: the British 1958 birth cohort study. Ann Allergy Asthma Immunol 98(4):337–343

    PubMed  Google Scholar 

  10. Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368(9537):804–813

    PubMed  CAS  Google Scholar 

  11. Gilliland FD et al (2006) Regular smoking and asthma incidence in adolescents. Am J Respir Crit Care Med 174(10):1094–1100

    PubMed  PubMed Central  Google Scholar 

  12. Tetrault JM et al (2007) Effects of marijuana smoking on pulmonary function and respiratory complications: a systematic review. Arch Intern Med 167(3):221–228

    PubMed  PubMed Central  Google Scholar 

  13. Taylor DR et al (2002) A longitudinal study of the effects of tobacco and cannabis exposure on lung function in young adults. Addiction 97(8):1055–1061

    PubMed  Google Scholar 

  14. McCreanor J et al (2007) Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 357(23):2348–2358

    PubMed  CAS  Google Scholar 

  15. Bakerly ND et al (2008) Fifteen-year trends in occupational asthma: data from the Shield surveillance scheme. Occup Med 58(3):169–174

    Google Scholar 

  16. Willemsen G et al (2008) Heritability of self-reported asthma and allergy: a study in adult Dutch twins, siblings and parents. Twin Res Hum Genet 11(2):132–142

    PubMed  Google Scholar 

  17. Holberg CJ et al (1996) Segregation analysis of physician-diagnosed asthma in Hispanic and non-Hispanic white families. A recessive component? Am J Respir Crit Care Med 154(1):144–150

    PubMed  CAS  Google Scholar 

  18. Lawrence S et al (1994) Genetic analysis of atopy and asthma as quantitative traits and ordered polychotomies. Ann Hum Genet 58(4):359–368

    PubMed  CAS  Google Scholar 

  19. Stein RT et al (1999) Influence of parental smoking on respiratory symptoms during the first decade of life: the Tucson Children’s Respiratory Study. Am J Epidemiol 149(11):1030–1037

    PubMed  CAS  Google Scholar 

  20. Lewis S et al (1995) Prospective study of risk factors for early and persistent wheezing in childhood. Eur Respir J 8(3):349–356

    PubMed  CAS  Google Scholar 

  21. Lau S et al (2002) The development of childhood asthma: lessons from the German Multicentre Allergy Study (MAS). Paediatr Respir Rev 3(3):265–272

    PubMed  Google Scholar 

  22. Tariq S et al (2000) Influence of smoking on asthmatic symptoms and allergen sensitisation in early childhood. Postgrad Med J 76(901):694–699

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Willers S et al (2007) Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 62(9):773–779

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Romieu I et al (2007) Maternal fish intake during pregnancy and atopy and asthma in infancy. Clin Exp Allergy 37(4):518–525

    PubMed  CAS  Google Scholar 

  25. Mihrshahi S et al (2007) The association between infant feeding practices and subsequent atopy among children with a family history of asthma. Clin Exp Allergy 37(5):671–679

    PubMed  CAS  Google Scholar 

  26. Nafstad P, Magnus P, Jaakkola JJ (2000) Risk of childhood asthma and allergic rhinitis in relation to pregnancy complications. J Allergy Clin Immunol 106(5):867–873

    PubMed  CAS  Google Scholar 

  27. Annesi-Maesano I, Moreau D, Strachan D (2001) In utero and perinatal complications preceding asthma. Allergy 56(6):491–497

    PubMed  CAS  Google Scholar 

  28. Lewis S et al (1996) Study of the aetiology of wheezing illness at age 16 in two national British birth cohorts. Thorax 51(7):670–676

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Stick SM et al (1996) Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet 348(9034):1060–1064

    PubMed  CAS  Google Scholar 

  30. Asher MI, Ellwood P (2014) The global asthma report 2014. Global Asthma Network, New Zealand

    Google Scholar 

  31. Lugogo NL, Kraft M (2006) Epidemiology of asthma. Clin Chest Med 27(1):1–15

    PubMed  Google Scholar 

  32. Bousquet J, Humbert M (2015) GINA 2015: the latest iteration of a magnificent journey. Eur Respir J 46:579–582

    PubMed  Google Scholar 

  33. Ferkol T, Schraufnagel D (2014) The global burden of respiratory disease. Ann Am Thorac Soc 11(3):404–406

    PubMed  Google Scholar 

  34. Wang D et al (2013) Cross-sectional epidemiological survey of asthma in Jinan, China. Respirology 18(2):313–322

    PubMed  Google Scholar 

  35. Burney P, Jarvis D, Perez-Padilla R (2015) The global burden of chronic respiratory disease in adults. Int J Tuberc Lung Dis 19(1):10–20

    PubMed  CAS  Google Scholar 

  36. Sears MR (2014) Trends in the prevalence of asthma. Chest 145(2):219–225

    PubMed  Google Scholar 

  37. BaĂ¯z N, Annesi-Maesano I (2012) Is the asthma epidemic still ascending? Clin Chest Med 33(3):419–429

    PubMed  Google Scholar 

  38. Aaron SD et al (2008) Overdiagnosis of asthma in obese and nonobese adults. CMAJ 179(11):1121–1131

    PubMed  PubMed Central  Google Scholar 

  39. Bauer UE et al (2014) Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet 384(9937):45–52

    PubMed  Google Scholar 

  40. Dharmage SC, Perret J, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246

    PubMed  PubMed Central  Google Scholar 

  41. Nurmagambetov T, Kuwahara R, Garbe P (2018) The economic burden of asthma in the United States, 2008–2013. Ann Am Thorac Soc 15(3):348–356

    PubMed  Google Scholar 

  42. Schiller JS, Lucas JW, Peregoy JA (2012) Summary health statistics for US adults: national health interview survey, 2011. Vital Health Stat (252):1–207

    Google Scholar 

  43. Netuveli G et al (2005) Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet 365(9456):312–317

    PubMed  Google Scholar 

  44. Sheikh A et al (2016) Ethnic variations in asthma hospital admission, readmission and death: a retrospective, national cohort study of 4.62 million people in Scotland. BMC Med 14(1):3

    PubMed  PubMed Central  Google Scholar 

  45. Wang H-Y et al (2008) Prevalence of asthma among Chinese adolescents living in Canada and in China. CMAJ 179(11):1133–1142

    PubMed  PubMed Central  Google Scholar 

  46. To T et al (2012) Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12(1):204

    PubMed  PubMed Central  Google Scholar 

  47. Wong GW, Leung TF, Ko FW (2013) Changing prevalence of allergic diseases in the Asia-pacific region. Allergy, Asthma Immunol Res 5(5):251–257

    Google Scholar 

  48. Global Asthma Network Group (2014) The global asthma report 2014. Global Asthma Network Group, Auckland, New Zealand, p 769

    Google Scholar 

  49. Schluger NW, Koppaka R (2014) Lung disease in a global context. A call for public health action. Ann Am Thorac Soc 11(3):407–416

    PubMed  Google Scholar 

  50. Asher I, Pearce N (2014) Global burden of asthma among children. Int J Tuberc Lung Dis 18(11):1269–1278

    PubMed  CAS  Google Scholar 

  51. Adeloye D et al (2013) An estimate of asthma prevalence in Africa: a systematic analysis. Croat Med J 54(6):519–531

    PubMed  PubMed Central  Google Scholar 

  52. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18(5):673

    PubMed  CAS  Google Scholar 

  53. Erle DJ, Sheppard D (2014) The cell biology of asthma. J Cell Biol 205(5):621–631

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kudo M, Ishigatsubo Y, Aoki I (2013) Pathology of asthma. Front Microbiol 4:263

    PubMed  PubMed Central  Google Scholar 

  55. van der Meer A-N et al (2016) A 1-day visit in a severe asthma centre: effect on asthma control, quality of life and healthcare use. Eur Respir J 48(3):726–733

    PubMed  Google Scholar 

  56. Hogg JC (1997) The pathology of asthma. APMIS 105(7–12):735–745

    PubMed  CAS  Google Scholar 

  57. Hamid Q et al (1997) Inflammation of small airways in asthma. J Allergy Clin Immunol 100(1):44–51

    PubMed  CAS  Google Scholar 

  58. Martin RJ (1998) Small airway and alveolar tissue changes in nocturnal asthma. Am J Respir Crit Care Med 157(5):S188–S190

    PubMed  CAS  Google Scholar 

  59. Demedts IK et al (2005) Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol 5(3):257–263

    PubMed  CAS  Google Scholar 

  60. Moreno RH, Hogg JC, Paré PD (1986) Mechanics of airway narrowing. Am Rev Respir Dis 133(6):1171–1180

    PubMed  CAS  Google Scholar 

  61. James AL, Paré PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139(1):242–246

    PubMed  CAS  Google Scholar 

  62. Pare P et al (1997) The functional consequences of airway remodeling in asthma. Monaldi Arch Chest Dis 52(6):589–596

    PubMed  CAS  Google Scholar 

  63. Ebina M et al (1993) Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am Rev Respir Dis 148:720–726

    PubMed  CAS  Google Scholar 

  64. James AL et al (2012) Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med 185(10):1058–1064

    PubMed  Google Scholar 

  65. Oliver MN et al (2007) Airway hyperresponsiveness, remodeling, and smooth muscle mass: right answer, wrong reason? Am J Respir Cell Mol Biol 37(3):264–272

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Elliot JG et al (2015) Distribution of airway smooth muscle remodelling in asthma: relation to airway inflammation. Respirology 20(1):66–72

    PubMed  Google Scholar 

  67. Carroll N et al (1996) Airway structure and inflammatory cells in fatal attacks of asthma. Eur Respir J 9(4):709–715

    PubMed  CAS  Google Scholar 

  68. Faul J et al (1997) Lung immunopathology in cases of sudden asthma death. Eur Respir J 10(2):301–307

    PubMed  CAS  Google Scholar 

  69. Kraft M et al (1999) Lymphocyte and eosinophil influx into alveolar tissue in nocturnal asthma. Am J Respir Crit Care Med 159(1):228–234

    PubMed  CAS  Google Scholar 

  70. Mauad T et al (2004) Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma. Am J Respir Crit Care Med 170(8):857–862

    PubMed  Google Scholar 

  71. Gelb AF et al (2002) Unsuspected loss of lung elastic recoil in chronic persistent asthma. Chest 121(3):715–721

    PubMed  Google Scholar 

  72. Holgate S et al (1999) The bronchial epithelium as a key regulator of airway inflammation and remodelling in asthma. Clin Exp Allergy 29:90–95

    PubMed  Google Scholar 

  73. Reddel CJ, Weiss AS, Burgess JK (2012) Elastin in asthma. Pulm Pharmacol Ther 25(2):144–153

    PubMed  CAS  Google Scholar 

  74. Holtzman MJ et al (2014) The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 14(10):686–698

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Puddicombe S et al (2000) Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 14(10):1362–1374

    PubMed  CAS  Google Scholar 

  76. Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684

    PubMed  CAS  Google Scholar 

  77. Knight DA et al (2001) Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J Allergy Clin Immunol 108(5):797–803

    PubMed  CAS  Google Scholar 

  78. Barnes PJ et al (2009) Asthma and COPD: basic mechanisms and clinical management. Elsevier, Amsterdam

    Google Scholar 

  79. Holgate ST et al (2000) Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 105(2):193–204

    PubMed  CAS  Google Scholar 

  80. Doeing DC, Solway J (2013) Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol 114(7):834–843

    PubMed  PubMed Central  CAS  Google Scholar 

  81. James AL et al (2009) Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur Respir J 34(5):1040–1045

    PubMed  CAS  Google Scholar 

  82. Benayoun L et al (2003) Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 167(10):1360–1368

    PubMed  Google Scholar 

  83. Pepe C et al (2005) Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol 116(3):544–549

    PubMed  Google Scholar 

  84. Berair R, Hollins F, Brightling C (2013) Airway smooth muscle hypercontractility in asthma. J Allergy 2013:185971

    Google Scholar 

  85. Damera G, Tliba O, Panettieri RA Jr (2009) Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther 22(5):353–359

    PubMed  CAS  Google Scholar 

  86. Lazaar AL, Panettieri RA Jr (2005) Airway smooth muscle: a modulator of airway remodeling in asthma. J Allergy Clin Immunol 116(3):488–495

    PubMed  Google Scholar 

  87. Fernandes DJ et al (2003) Invited Review: Do inflammatory mediators influence the contribution of airway smooth muscle contraction to airway hyperresponsiveness in asthma? J Appl Physiol 95(2):844–853

    PubMed  CAS  Google Scholar 

  88. Brightling CE et al (2002) Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 346(22):1699–1705

    PubMed  Google Scholar 

  89. Rogers DF, Barnes PJ (2006) Treatment of airway mucus hypersecretion. Ann Med 38(2):116–125

    PubMed  CAS  Google Scholar 

  90. Martínez-Rivera C et al (2018) Mucus hypersecretion in asthma is associated with rhinosinusitis, polyps and exacerbations. Respir Med 135:22–28

    PubMed  Google Scholar 

  91. Williams OW et al (2006) Airway mucus: from production to secretion. Am J Respir Cell Mol Biol 34(5):527–536

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Kuyper LM et al (2003) Characterization of airway plugging in fatal asthma. Am J Med 115(1):6–11

    PubMed  Google Scholar 

  93. Wagers SS et al (2007) Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms. J Appl Physiol 102(1):221–230

    PubMed  Google Scholar 

  94. Wan H et al (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131(4):953–964

    PubMed  CAS  Google Scholar 

  95. Ordoñez CL et al (2001) Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med 163(2):517–523

    PubMed  Google Scholar 

  96. Dillard P, Wetsel RA, Drouin SM (2007) Complement C3a regulates Muc5ac expression by airway Clara cells independently of Th2 responses. Am J Respir Crit Care Med 175(12):1250–1258

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Song JS et al (2007) Nitric oxide induces MUC5AC mucin in respiratory epithelial cells through PKC and ERK dependent pathways. Respir Res 8(1):28

    PubMed  PubMed Central  Google Scholar 

  98. Lora JM et al (2005) Tumor necrosis factor-α triggers mucus production in airway epithelium through an IκB kinase β-dependent mechanism. J Biol Chem 280(43):36510–36517

    PubMed  CAS  Google Scholar 

  99. Perrais M et al (2002) Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF receptor/Ras/Raf/extracellular signal-regulated kinase cascade and Sp1. J Biol Chem 277(35):32258–32267

    PubMed  CAS  Google Scholar 

  100. Barrett NA, Austen KF (2009) Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 31(3):425–437

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Melis M et al (2002) Fluticasone induces apoptosis in peripheral T-lymphocytes: a comparison between asthmatic and normal subjects. Eur Respir J 19(2):257–266

    PubMed  CAS  Google Scholar 

  102. Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6(10):1047

    PubMed  CAS  Google Scholar 

  103. He R, Geha RS (2010) Thymic stromal lymphopoietin. Ann N Y Acad Sci 1183:13

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Verstraelen S et al (2008) Cell types involved in allergic asthma and their use in in vitro models to assess respiratory sensitization. Toxicol In Vitro 22(6):1419–1431

    PubMed  CAS  Google Scholar 

  105. Bharadwaj AS, Bewtra AK, Agrawal DK (2007) Dendritic cells in allergic airway inflammation. Can J Physiol Pharmacol 85(7):686–699

    PubMed  CAS  Google Scholar 

  106. Gaurav R, Agrawal DK (2013) Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 9(10):899–919

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Schon-Hegrad MA et al (1991) Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med 173(6):1345–1356

    PubMed  CAS  Google Scholar 

  108. Sun-sang JS, Rose CE, Fu SM (2001) Intratracheal priming with ovalbumin-and ovalbumin 323–339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. J Immunol 166(2):1261–1271

    Google Scholar 

  109. Wills-Karp M (2000) Murine models of asthma in understanding immune dysregulation in human asthma. Immunopharmacology 48(3):263–268

    PubMed  CAS  Google Scholar 

  110. Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410

    PubMed  PubMed Central  CAS  Google Scholar 

  111. van Rijt LS et al (2002) Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood 100(10):3663–3671

    PubMed  Google Scholar 

  112. Lambrecht BN et al (1999) Allergen-induced changes in bone-marrow progenitor and airway dendritic cells in sensitized rats. Am J Respir Cell Mol Biol 20(6):1165–1174

    PubMed  CAS  Google Scholar 

  113. Gregory LG, Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32(9):402–411

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Wills-Karp M (2010) Allergen-specific pattern recognition receptor pathways. Curr Opin Immunol 22(6):777–782

    PubMed  CAS  Google Scholar 

  115. Penna G et al (2002) Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum Immunol 63(12):1164–1171

    PubMed  CAS  Google Scholar 

  116. Hammad H et al (2003) Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC\CCL17 and MDC\CCL22. Eur Cytokine Netw 14(4):219–228

    PubMed  CAS  Google Scholar 

  117. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2(10):773

    PubMed  CAS  Google Scholar 

  118. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:10331079

    Google Scholar 

  119. Venkatesha RT et al (2005) Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol 42(5):581–587

    PubMed  CAS  Google Scholar 

  120. Renauld J-C (2001) New insights into the role of cytokines in asthma. J Clin Pathol 54(8):577–589

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Barnes PJ (2017) Cellular and molecular mechanisms of asthma and COPD. Clin Sci 131(13):1541–1558

    PubMed  CAS  Google Scholar 

  122. Bradding P, Walls AF, Holgate ST (2006) The role of the mast cell in the pathophysiology of asthma. J Allergy Clin Immunol 117(6):1277–1284

    PubMed  CAS  Google Scholar 

  123. Louahed J et al (2000) Interleukin-9 upregulates mucus expression in the airways. Am J Respir Cell Mol Biol 22(6):649–656

    PubMed  CAS  Google Scholar 

  124. Ammit AJ et al (1997) Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am J Respir Crit Care Med 155(3):1123–1129

    PubMed  CAS  Google Scholar 

  125. Carroll N, Mutavdzic S, James A (2002) Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J 19(5):879–885

    PubMed  CAS  Google Scholar 

  126. Chang TW et al (1990) Monoclonal antibodies specific for human IgE-producing B cells: a potential therapeutic for IgE-mediated allergic diseases. Bio/Technology 8(2):122

    PubMed  CAS  Google Scholar 

  127. MacGlashan DW et al (1997) Down-regulation of Fc (epsilon) RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158(3):1438–1445

    PubMed  CAS  Google Scholar 

  128. Hart PH (2001) Regulation of the inflammatory response in asthma by mast cell products. Immunol Cell Biol 79(2):149–153

    PubMed  CAS  Google Scholar 

  129. Holsapple MP et al (2005) Assessing the potential to induce respiratory hypersensitivity. Toxicol Sci 91(1):4–13

    PubMed  Google Scholar 

  130. Schweitzer-Stenner R, Pecht I (2005) Cutting edge: death of a dogma or enforcing the artificial: monomeric IgE binding may initiate mast cell response by inducing its receptor aggregation. J Immunol 174(8):4461–4464

    PubMed  CAS  Google Scholar 

  131. Kalesnikoff J et al (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14(6):801–811

    PubMed  CAS  Google Scholar 

  132. Balzar S et al (2005) Relationship of small airway chymase-positive mast cells and lung function in severe asthma. Am J Respir Crit Care Med 171(5):431–439

    PubMed  Google Scholar 

  133. Kay AB, Klion AD (2004) Anti-interleukin-5 therapy for asthma and hypereosinophilic syndrome. Immunol Allergy Clin 24(4):645–666

    Google Scholar 

  134. Possa SS et al (2013) Eosinophilic inflammation in allergic asthma. Front Pharmacol 4:46

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Jacobsen EA et al (2011) Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J Immunol 187(11):6059–6068

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Bousquet J et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–1039

    PubMed  CAS  Google Scholar 

  137. Price DB et al (2015) Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study. Lancet Respir Med 3(11):849–858

    PubMed  Google Scholar 

  138. Kita H (2011) Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev 242(1):161–177

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Schleich FN et al (2014) Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur Respir J 44(1):97–108

    PubMed  Google Scholar 

  140. Roufosse F (2018) Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. Front Med 5:49

    Google Scholar 

  141. Vignola AM, Kips J, Bousquet J (2000) Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol 105(6):1041–1053

    PubMed  CAS  Google Scholar 

  142. Hendeles L, Asmus M, Chesrown S (2004) Evaluation of cytokine modulators for asthma. Paediatr Respir Rev 5:S107–S112

    PubMed  Google Scholar 

  143. Lemanske RF Jr, Busse WW (2010) Asthma: clinical expression and molecular mechanisms. J Allergy Clin Immunol 125(2):S95–S102

    PubMed  PubMed Central  Google Scholar 

  144. Miyake K, Karasuyama H (2017) Emerging roles of basophils in allergic inflammation. Allergol Int 66(3):382–391

    PubMed  CAS  Google Scholar 

  145. Wedemeyer J, Tsai M, Galli SJ (2000) Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol 12(6):624–631

    PubMed  CAS  Google Scholar 

  146. Siracusa MC et al (2013) Basophils and allergic inflammation. J Allergy Clin Immunol 132(4):789–801

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Di C et al (2015) Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation. J Biol Chem 290(20):12523–12536

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Rayees S et al (2015) Therapeutic effects of R8, a semi-synthetic analogue of Vasicine, on murine model of allergic airway inflammation via STAT6 inhibition. Int Immunopharmacol 26(1):246–256

    PubMed  CAS  Google Scholar 

  149. Marone G, Triggiani M, de Paulis A (2005) Mast cells and basophils: friends as well as foes in bronchial asthma? Trends Immunol 26(1):25–31

    PubMed  CAS  Google Scholar 

  150. Perrigoue JG et al (2009) MHC class II-dependent basophil–CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat Immunol 10(7):697

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Sokol CL et al (2009) Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol 10(7):713

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Yoshimoto T et al (2009) Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat Immunol 10(7):706

    PubMed  CAS  Google Scholar 

  153. Douwes J et al (2002) Non-eosinophilic asthma: importance and possible mechanisms. Thorax 57(7):643–648

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Ciepiela O, Ostafin M, Demkow U (2015) Neutrophils in asthma—a review. Respir Physiol Neurobiol 209:13–16

    PubMed  CAS  Google Scholar 

  155. Radeau T et al (1990) Enhanced arachidonic acid metabolism and human neutrophil migration in asthma. Prostaglandins Leukot Essent Fat Acids 41(2):131–138

    CAS  Google Scholar 

  156. Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma: persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156(3):737–743

    PubMed  CAS  Google Scholar 

  157. Shaw DE et al (2007) Association between neutrophilic airway inflammation and airflow limitation in adults with asthma. Chest 132(6):1871–1875

    PubMed  CAS  Google Scholar 

  158. Smit JJ, Lukacs NW (2006) A closer look at chemokines and their role in asthmatic responses. Eur J Pharmacol 533(1–3):277–288

    PubMed  CAS  Google Scholar 

  159. Arjomandi M et al (2005) Repeated exposure to ozone increases alveolar macrophage recruitment into asthmatic airways. Am J Respir Crit Care Med 172(4):427–432

    PubMed  PubMed Central  Google Scholar 

  160. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604

    PubMed  CAS  Google Scholar 

  161. Leung T et al (2004) Increased macrophage-derived chemokine in exhaled breath condensate and plasma from children with asthma. Clin Exp Allergy 34(5):786–791

    PubMed  CAS  Google Scholar 

  162. Mautino G et al (1999) Increased expression of tissue inhibitor of metalloproteinase-1 and loss of correlation with matrix metalloproteinase-9 by macrophages in asthma. Lab Invest 79(1):39–47

    PubMed  CAS  Google Scholar 

  163. Moon K-A et al (2007) Allergen-induced CD11b+ CD11cint CCR3+ macrophages in the lung promote eosinophilic airway inflammation in a mouse asthma model. Int Immunol 19(12):1371–1381

    PubMed  CAS  Google Scholar 

  164. Balhara J, Gounni A (2012) The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol 5(6):605

    PubMed  CAS  Google Scholar 

  165. Hoshi H et al (1995) IL-5, IL-8 and GM-CSF immunostaining of sputum cells in bronchial asthma and chronic bronchitis. Clin Exp Allergy 25(8):720–728

    PubMed  CAS  Google Scholar 

  166. Ackerman V et al (1994) Detection of cytokines and their cell sources in bronchial biopsy specimens from asthmatic patients: relationship to atopic status, symptoms, and level of airway hyperresponsiveness. Chest 105(3):687–696

    PubMed  CAS  Google Scholar 

  167. Chanez P et al (1994) Modulation by interleukin-4 of cytokine release from mononuclear phagocytes in asthma. J Allergy Clin Immunol 94(6):997–1005

    PubMed  CAS  Google Scholar 

  168. Gosset P et al (1992) Tumor necrosis factor alpha and interleukin-6 production by human mononuclear phagocytes from allergic asthmatics after IgE-dependent stimulation. Am Rev Respir Dis 146:768–768

    PubMed  CAS  Google Scholar 

  169. Gosset P et al (1999) Production of chemokines and proinflammatory and antiinflammatory cytokines by human alveolar macrophages activated by IgE receptors. J Allergy Clin Immunol 103(2):289–297

    PubMed  CAS  Google Scholar 

  170. Wiest M et al (2018) Clinical implications of CD4+ T cell subsets in adult atopic asthma patients. Allergy Asthma Clin Immunol 14(1):7

    PubMed  PubMed Central  Google Scholar 

  171. Tang C et al (1997) IL-5 production by bronchoalveolar lavage and peripheral blood mononuclear cells in asthma and atopy. Eur Respir J 10(3):624–632

    PubMed  CAS  Google Scholar 

  172. Park CS et al (1996) Interleukin-4 and low-affinity receptor for IgE on B cells in peripheral blood of patients with atopic bronchial asthma. J Allergy Clin Immunol 97(5):1121–1128

    PubMed  CAS  Google Scholar 

  173. Kenyon NJ, Kelly EA, Jarjour NN (2000) Enhanced cytokine generation by peripheral blood mononuclear cells in allergic and asthma subjects. Ann Allergy Asthma Immunol 85(2):115–120

    PubMed  CAS  Google Scholar 

  174. Tang C et al (1998) Alveolar macrophages from atopic asthmatics, but not atopic nonasthmatics, enhance interleukin-5 production by CD4+ T cells. Am J Respir Crit Care Med 157(4):1120–1126

    PubMed  CAS  Google Scholar 

  175. Tang C et al (1999) Modulatory effects of alveolar macrophages on CD4+ T-cell IL-5 responses correlate with IL-1beta, IL-6, and IL-12 production. Eur Respir J 14(1):106–112

    PubMed  CAS  Google Scholar 

  176. Kelly EAB et al (1997) The effect of segmental bronchoprovocation with allergen on airway lymphocyte function. Am J Respir Crit Care Med 156(5):1421–1428

    PubMed  CAS  Google Scholar 

  177. Nakamura Y et al (1999) Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 103(2):215–222

    PubMed  CAS  Google Scholar 

  178. Taha R et al (2003) T helper type 2 cytokine receptors and associated transcription factors GATA-3, c-MAF, and signal transducer and activator of transcription factor-6 in induced sputum of atopic asthmatic patients. Chest 123(6):2074–2082

    PubMed  CAS  Google Scholar 

  179. Takeda K et al (2009) Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. J Immunol 183(1):181–190

    PubMed  CAS  Google Scholar 

  180. Ying S et al (1997) Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J Immunol 158(7):3539–3544

    PubMed  CAS  Google Scholar 

  181. Gelfand EW et al (2017) Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 278(1):63–86

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Hamelmann E et al (1996) Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J Exp Med 183(4):1719–1729

    PubMed  CAS  Google Scholar 

  183. Tsitsiou E et al (2012) Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J Allergy Clin Immunol 129(1):95–103

    PubMed  CAS  Google Scholar 

  184. Hilvering B et al (2018) Synergistic activation of pro-inflammatory type-2 CD8+ T lymphocytes by lipid mediators in severe eosinophilic asthma. Mucosal Immunol 11(5):1408

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Ano S et al (2013) Transcription factors GATA-3 and RORγt are important for determining the phenotype of allergic airway inflammation in a murine model of asthma. J Immunol 190(3):1056–1065

    PubMed  CAS  Google Scholar 

  186. Larché M, Robinson DS, Kay AB (2003) The role of T lymphocytes in the pathogenesis of asthma. J Allergy Clin Immunol 111(3):450–463

    PubMed  Google Scholar 

  187. Ngoc LP et al (2005) Cytokines, allergy, and asthma. Curr Opin Allergy Clin Immunol 5(2):161–166

    PubMed  CAS  Google Scholar 

  188. Barnes PJ, Adcock I (1998) Transcription factors and asthma. Eur Respir J 12(1):221–234

    PubMed  CAS  Google Scholar 

  189. Cousins DJ, McDonald J, Lee TH (2008) Therapeutic approaches for control of transcription factors in allergic disease. J Allergy Clin Immunol 121(4):803–809

    PubMed  CAS  Google Scholar 

  190. Barnes PJ, Karin M (1997) Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336(15):1066–1071

    PubMed  CAS  Google Scholar 

  191. Bureau F et al (2000) Mechanisms of persistent NF-κB activity in the bronchi of an animal model of asthma. J Immunol 165(10):5822–5830

    PubMed  CAS  Google Scholar 

  192. Gagliardo R et al (2003) Persistent activation of nuclear factor-κB signaling pathway in severe uncontrolled asthma. Am J Respir Crit Care Med 168(10):1190–1198

    PubMed  Google Scholar 

  193. Hart LA et al (1998) Activation and localization of transcription factor, nuclear factor-κB, in asthma. Am J Respir Crit Care Med 158(5):1585–1592

    PubMed  CAS  Google Scholar 

  194. Poynter ME, Irvin CG, Janssen-Heininger YM (2002) Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 160(4):1325–1334

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Yang L et al (1998) Essential role of nuclear factor κB in the induction of eosinophilia in allergic airway inflammation. J Exp Med 188(9):1739–1750

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Donovan CE et al (1999) NF-κB/Rel transcription factors: c-Rel promotes airway hyperresponsiveness and allergic pulmonary inflammation. J Immunol 163(12):6827–6833

    PubMed  CAS  Google Scholar 

  197. Das J et al (2001) A critical role for NF-κB in GATA3 expression and T H 2 differentiation in allergic airway inflammation. Nat Immunol 2(1):45

    PubMed  CAS  Google Scholar 

  198. Choi I-W et al (2004) Administration of antisense phosphorothioate oligonucleotide to the p65 subunit of NF-κB inhibits established asthmatic reaction in mice. Int Immunopharmacol 4(14):1817–1828

    PubMed  CAS  Google Scholar 

  199. Rahman I (2005) Redox signaling in the lungs. Antioxid Redox Signal 7(1–2):1–5

    PubMed  CAS  Google Scholar 

  200. Yuan F et al (2019) JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling. Phytomedicine 57:305–314

    PubMed  CAS  Google Scholar 

  201. Kaplan MH, Grusby MJ (1998) Regulation of T helper cell differentiation by STAT molecules. J Leukoc Biol 64(1):2–5

    PubMed  CAS  Google Scholar 

  202. Palmer-Crocker RL, Hughes C, Pober JS (1996) IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma c chain. J Clin Invest 98(3):604–609

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Ray A, Cohn L (1999) Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest 104(8):985–993

    PubMed  PubMed Central  CAS  Google Scholar 

  204. Kaplan MH et al (1996) Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 4(3):313–319

    PubMed  CAS  Google Scholar 

  205. Shimoda K et al (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature 380(6575):630

    PubMed  CAS  Google Scholar 

  206. Takeda K et al (1996) Essential role of Stat6 in IL-4 signalling. Nature 380(6575):627

    PubMed  CAS  Google Scholar 

  207. Yokozeki H et al (2000) Signal transducer and activator of transcription 6 is essential in the induction of contact hypersensitivity. J Exp Med 191(6):995–1004

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Yokozeki H et al (2004) In vivo transfection of a cis element ‘decoy’ against signal transducers and activators of transcription 6 (STAT6)-binding site ameliorates IgE-mediated late-phase reaction in an atopic dermatitis mouse model. Gene Ther 11(24):1753

    PubMed  CAS  Google Scholar 

  209. Hill S et al (1999) Homologous human and murine antisense oligonucleotides targeting Stat6: functional effects on germline C ɛ transcript. Am J Respir Cell Mol Biol 21(6):728–737

    PubMed  CAS  Google Scholar 

  210. Peng Q, Matsuda T, Hirst SJ (2004) Signaling pathways regulating interleukin-13-stimulated chemokine release from airway smooth muscle. Am J Respir Crit Care Med 169(5):596–603

    PubMed  Google Scholar 

  211. Chiba Y, Todoroki M, Misawa M (2009) Activation of signal transducer and activator of transcription factor 1 by interleukins-13 and -4 in cultured human bronchial smooth muscle cells. J Smooth Muscle Res 45(6):279–288

    PubMed  Google Scholar 

  212. Darcan-Nicolaisen Y et al (2009) Small interfering RNA against transcription factor STAT6 inhibits allergic airway inflammation and hyperreactivity in mice. J Immunol 182(12):7501–7508

    PubMed  CAS  Google Scholar 

  213. Ho I et al (1991) Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 10(5):1187–1192

    PubMed  PubMed Central  CAS  Google Scholar 

  214. Ansel KM et al (2006) Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol 24:607–656

    PubMed  CAS  Google Scholar 

  215. Santangelo S et al (2002) DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4+ T cell differentiation. J Immunol 169(4):1893–1903

    PubMed  CAS  Google Scholar 

  216. Rayees S et al (2014) Linking GATA-3 and interleukin-13: implications in asthma. Inflamm Res 63(4):255–265

    PubMed  CAS  Google Scholar 

  217. Lee HJ et al (2000) GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192(1):105–116

    PubMed  PubMed Central  CAS  Google Scholar 

  218. Sundrud MS et al (2003) Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J Immunol 171(7):3542–3549

    PubMed  CAS  Google Scholar 

  219. Zhang D-H et al (1999) Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11(4):473–482

    PubMed  CAS  Google Scholar 

  220. Kiwamoto T et al (2006) Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med 174(2):142–151

    PubMed  CAS  Google Scholar 

  221. Yamashita N et al (2006) Involvement of GATA-3-dependent Th2 lymphocyte activation in airway hyperresponsiveness. Am J Phys Lung Cell Mol Phys 290(6):L1045–L1051

    CAS  Google Scholar 

  222. Lee C-C, Huang H-Y, Chiang B-L (2008) Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther 16(1):60–65

    PubMed  CAS  Google Scholar 

  223. Rayees S et al (2014) Anti-asthmatic activity of azepino [2, 1-b] quinazolones, synthetic analogues of vasicine, an alkaloid from Adhatoda vasica. Med Chem Res 23(9):4269–4279

    CAS  Google Scholar 

  224. Hogan PG et al (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232

    PubMed  CAS  Google Scholar 

  225. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(2):S67–S79

    PubMed  CAS  Google Scholar 

  226. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472

    PubMed  CAS  Google Scholar 

  227. Peng SL et al (2001) NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14(1):13–20

    PubMed  CAS  Google Scholar 

  228. Jia X et al (2014) Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca2+/NFAT pathway in airway epithelial cells. FEBS Lett 588(17):3047–3054

    PubMed  CAS  Google Scholar 

  229. Jairaman A et al (2015) Store-operated Ca2+ release-activated Ca2+ channels regulate PAR2-activated Ca2+ signaling and cytokine production in airway epithelial cells. J Immunol 195(5):2122–2133

    PubMed  PubMed Central  CAS  Google Scholar 

  230. Jairaman A et al (2016) Allergens stimulate store-operated calcium entry and cytokine production in airway epithelial cells. Sci Rep 6:32311

    PubMed  PubMed Central  CAS  Google Scholar 

  231. Global Initiative for Asthma (2018) GINA report, global strategy for asthma management and prevention. Global Initiative for Asthma, Fontana, WI

    Google Scholar 

  232. Bateman ED et al (2004) Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am J Respir Crit Care Med 170(8):836–844

    PubMed  Google Scholar 

  233. Reddel HK et al (2019) GINA 2019: a fundamental change in asthma management: treatment of asthma with short-acting bronchodilators alone is no longer recommended for adults and adolescents. Eur Respir J 53(6)

    Google Scholar 

  234. Urbano FL (2008) Review of the NAEPP 2007 Expert Panel Report (EPR-3) on asthma diagnosis and treatment guidelines. J Manag Care Pharm 14(1):41–49

    PubMed  Google Scholar 

  235. Zahran HS et al (2017) Long-term control medication use and asthma control status among children and adults with asthma. J Asthma 54(10):1065–1072

    PubMed  PubMed Central  Google Scholar 

  236. National Asthma Education and Prevention Program (2007) Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol 120(5 Suppl):S94

    Google Scholar 

  237. Diver S, Russell R, Brightling C (2018) New and emerging drug treatments for severe asthma. Clin Exp Allergy 48(3):241–252

    PubMed  CAS  Google Scholar 

  238. Weatherall M et al (2009) Dose–response relationship of inhaled corticosteroids and cataracts: a systematic review and meta-analysis. Respirology 14(7):983–990

    PubMed  Google Scholar 

  239. Schofield ML (2014) Asthma pharmacotherapy. Otolaryngol Clin N Am 47(1):55–64

    Google Scholar 

  240. Matsuse H, Kohno S (2014) Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother 15(3):353–363

    PubMed  CAS  Google Scholar 

  241. National Asthma Education and Prevention Program (2003) Expert panel report: guidelines for the diagnosis and management of asthma: update on selected topics, 2002. US Department of Health and Human Services, Public Health Service, National Institutes of Health

    Google Scholar 

  242. Ducharme F, di Salvio F (2004) Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev (1)

    Google Scholar 

  243. Dahlén S-E et al (2002) Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 165(1):9–14

    PubMed  Google Scholar 

  244. Barnes PJ (2008) Drugs for airway disease. Medicine 36(4):181–190

    Google Scholar 

  245. Rees J (2006) Asthma control in adults. BMJ 332(7544):767–771

    PubMed  PubMed Central  Google Scholar 

  246. Scullion J (2010) Prescribing beta-agonists for respiratory disease. Independent Nurse

    Google Scholar 

  247. Buhl R, Hamelmann E (2019) Future perspectives of anticholinergics for the treatment of asthma in adults and children. Ther Clin Risk Manag 15:473

    PubMed  PubMed Central  CAS  Google Scholar 

  248. Hamelmann E (2018) Long-acting muscarinic antagonists for the treatment of asthma in children—a new kid in town. Allergo J 27(7):24–31

    Google Scholar 

  249. Kerstjens HA et al (2016) Tiotropium improves lung function, exacerbation rate, and asthma control, independent of baseline characteristics including age, degree of airway obstruction, and allergic status. Respir Med 117:198–206

    PubMed  Google Scholar 

  250. Kang JY et al (2012) Effect of tiotropium bromide on airway remodeling in a chronic asthma model. Ann Allergy Asthma Immunol 109(1):29–35

    PubMed  CAS  Google Scholar 

  251. Ohta S et al (2010) Effect of tiotropium bromide on airway inflammation and remodelling in a mouse model of asthma. Clin Exp Allergy 40(8):1266–1275

    PubMed  CAS  Google Scholar 

  252. Bosnjak B et al (2014) Tiotropium bromide inhibits relapsing allergic asthma in BALB/c mice. Pulm Pharmacol Ther 27(1):44–51

    PubMed  CAS  Google Scholar 

  253. Food and Drug Administration (2018) Prescribing information for Spiriva® Respimat® (tiotropium bromide) inhalation spray, for oral inhalation

    Google Scholar 

  254. Ingelheim B (2018) Asthma: expanded indication for SPIRIVA® Respimat® for people 6 years and older

    Google Scholar 

  255. Moulton BC, Fryer AD (2011) Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br J Pharmacol 163(1):44–52

    PubMed  PubMed Central  CAS  Google Scholar 

  256. Ward M et al (1981) Ipratropium bromide in acute asthma. Br Med J (Clin Res Ed) 282(6264):598–600

    CAS  Google Scholar 

  257. Donohue JF et al (2016) Efficacy and safety of ipratropium bromide/albuterol compared with albuterol in patients with moderate-to-severe asthma: a randomized controlled trial. BMC Pulm Med 16(1):65

    PubMed  PubMed Central  Google Scholar 

  258. Lougheed MD et al (2010) Canadian Thoracic Society Asthma Management Continuum–2010 Consensus Summary for children six years of age and over, and adults. Can Respir J 17(1):15–24

    PubMed  PubMed Central  CAS  Google Scholar 

  259. Jolobe O (1984) Asthma vs. non-specific reversible airflow obstruction: clinical features and responsiveness to anticholinergic drugs. Respiration 45(3):237–242

    PubMed  CAS  Google Scholar 

  260. Lee TA et al (2008) Risk for death associated with medications for recently diagnosed chronic obstructive pulmonary disease. Ann Intern Med 149(6):380–390

    PubMed  Google Scholar 

  261. Ogale SS et al (2010) Cardiovascular events associated with ipratropium bromide in COPD. Chest 137(1):13–19

    PubMed  CAS  Google Scholar 

  262. Buhl R (2005) Anti-IgE antibodies for the treatment of asthma. Curr Opin Pulm Med 11(1):27–34

    PubMed  CAS  Google Scholar 

  263. Fahy J (2000) New and exploratory therapeutic agents for asthma: lung biology in health and disease. Marcel Dekker, Inc., New York, NY

    Google Scholar 

  264. Yeadon M, Diamant Z (1999) New and exploratory therapeutic agents for asthma, vol 139. CRC Press, Boca Raton

    Google Scholar 

  265. D’Amato G, Oldani V, Donner C (2002) Treating atopic asthma with the anti-IgE monoclonal antibody. Monaldi Arch Chest Dis 57(2):117–119

    PubMed  Google Scholar 

  266. Riccio A et al (2012) Omalizumab modulates bronchial reticular basement membrane thickness and eosinophil infiltration in severe persistent allergic asthma patients. Int J Immunopathol Pharmacol 25(2):475–484

    PubMed  CAS  Google Scholar 

  267. Hoshino M, Ohtawa J (2012) Effects of adding omalizumab, an anti-immunoglobulin E antibody, on airway wall thickening in asthma. Respiration 83(6):520–528

    PubMed  CAS  Google Scholar 

  268. D’Amato G et al (2014) Treating severe allergic asthma with anti-IgE monoclonal antibody (omalizumab): a review. Multidiscip Respir Med 9(1):23

    PubMed  PubMed Central  Google Scholar 

  269. Pelaia G et al (2011) Update on optimal use of omalizumab in management of asthma. J Asthma Allergy 4:49

    PubMed  PubMed Central  CAS  Google Scholar 

  270. National Asthma Education and Prevention Program (2002) Expert Panel Report: guidelines for the diagnosis and management of asthma update on selected topics—2002. J Allergy Clin Immunol 110(5 Suppl):S141

    Google Scholar 

  271. Leung K et al (1988) Effects of sodium cromoglycate and nedocromil sodium on histamine secretion from human lung mast cells. Thorax 43(10):756–761

    PubMed  PubMed Central  CAS  Google Scholar 

  272. Netzer NC et al (2012) The actual role of sodium cromoglycate in the treatment of asthma—a critical review. Sleep Breath 16(4):1027–1032

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawab John Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, J.A., Dar, N.J., Bhat, W.W. (2020). Asthma: Pathophysiology, Current Status, and Therapeutics. In: Rayees, S., Din, I., Singh, G., Malik, F. (eds) Chronic Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3734-9_2

Download citation

Publish with us

Policies and ethics