Skip to main content

A Shallow Introduction to Deep Neural Networks

  • Chapter
  • First Online:
Deep Neural Evolution

Part of the book series: Natural Computing Series ((NCS))

Abstract

Deep learning is one of the two branches of artificial intelligence that merged to give rise to the field of deep neural evolution. The other one is evolutionary computation introduced in the previous chapter. Deep learning, the most active research area in machine learning, is a powerful family of computational models that learns and processes data using multiple levels of abstractions. Over the last years, deep learning methods have shown amazing performances in a diverse field of applications. This chapter familiarizes the readers with the major classes of deep neural networks that are frequently used, namely CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), DBN (Deep Belief Network), Deep autoencoder, GAN (Generative Adversarial Network) and Deep Recursive Network. For each class of networks, we introduced the architecture, type of layers, processing units, learning algorithms and other relevant information. This chapter aims to provide the readers with necessary background information in deep learning for understanding the contemporary research in deep neural evolution presented in the subsequent chapters of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.kaggle.com.

  2. 2.

    https://github.com/hindupuravinash/the-gan-zoo.

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  3. Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  4. Deng, L.: A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 3, e2 (2014). https://doi.org/10.1017/atsip.2013.9

    Article  Google Scholar 

  5. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  6. Vargas, R., Mosavi, A., Ruiz, R.: Deep learning: a review. Adv. Intell. Syst. Comput. (2017). https://eprints.qut.edu.au/127354/

  7. Ling, Z.-H., Kang, S.-Y., Zen, H., Senior, A., Schuster, M., Qian, X.-J., Meng, H.M., Deng, L.: Deep learning for acoustic modeling in parametric speech generation: a systematic review of existing techniques and future trends. IEEE Signal Process. Mag. 32(3), 35–52 (2015)

    Article  Google Scholar 

  8. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  9. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19(6), 1236–1246 (2017)

    Article  Google Scholar 

  11. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation (2017). arXiv preprint:1704.06857

    Google Scholar 

  12. Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl. 8(6), 424 (2017)

    Google Scholar 

  13. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018 (2018). https://doi.org/10.1155/2018/7068349

    Google Scholar 

  14. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)

    Article  MathSciNet  Google Scholar 

  15. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  16. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Twelfth Annual Conference of the International Speech Communication Association (2011)

    Google Scholar 

  17. Mhaskar, H., Liao, Q., Poggio, T.: When and why are deep networks better than shallow ones?. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  18. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  20. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  21. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint:1502.03167

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  24. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint:1409.1556

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  27. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  28. Khan, A., Sohail, A., Ali, A.: A new channel boosted convolutional neural network using transfer learning (2018). arXiv preprint:1804.08528

    Google Scholar 

  29. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning (2015). arXiv preprint:1506.00019

    Google Scholar 

  31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  32. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  33. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). arXiv preprint:1406.1078

    Google Scholar 

  34. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 190–198 (2013)

    Google Scholar 

  35. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks (2013). arXiv preprint:1312.6026

    Google Scholar 

  36. Marchi, E., Vesperini, F., Squartini, S., Schuller, B.: Deep recurrent neural network-based autoencoders for acoustic novelty detection. Comput. Intell. Neurosci. 2017 (2017). https://doi.org/10.1155/2017/4694860

    Article  Google Scholar 

  37. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predicting Struct. Data 1(0) (2006). http://yann.lecun.com/exdb/publis/orig/lecun-06.pdf

  38. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade, pp. 599–619. Springer, Berlin (2012)

    Google Scholar 

  39. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  40. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1064–1071. ACM, New York (2008)

    Google Scholar 

  41. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  42. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  43. Goodfellow, I.: Nips 2016 tutorial: generative adversarial networks (2016). arXiv preprint:1701.00160

    Google Scholar 

  44. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv preprint:1511.06434

    Google Scholar 

  45. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks (2017). arXiv preprint:1703.10717

    Google Scholar 

  46. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation (2017). arXiv preprint:1710.10196

    Google Scholar 

  47. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks (2018). arXiv preprint:1805.08318

    Google Scholar 

  48. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  49. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv preprint:1701.07875

    Google Scholar 

  50. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  51. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. CoRR, vol. abs/1611.02163 (2016). http://arxiv.org/abs/1611.02163

  52. Qi, G.-J.: Loss-sensitive generative adversarial networks on Lipschitz densities (2017). arXiv preprint:1701.06264

    Google Scholar 

  53. Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)

    Google Scholar 

  54. Bianchini, M., Maggini, M., Sarti, L., Hawkes, P.: Recursive neural networks and their applications to image processing. Adv. Imaging Electron Phys. 140, 1 (2006)

    Article  Google Scholar 

  55. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)

    Google Scholar 

  56. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: Proceedings of International Conference on Neural Networks (ICNN’96), vol. 1, pp. 347–352. IEEE, Piscataway (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasimul Noman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noman, N. (2020). A Shallow Introduction to Deep Neural Networks. In: Iba, H., Noman, N. (eds) Deep Neural Evolution. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-3685-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3685-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3684-7

  • Online ISBN: 978-981-15-3685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics