Skip to main content

Real-Time Morphing of the Visible Man Liver with Intrahepatic Vasculatures

  • Conference paper
  • First Online:
  • 558 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1180))

Abstract

Computational models for liver deformation are usually performed without considering intrahepatic vasculatures. The major hurdle is the computational cost when deforming the liver and its vessels simultaneously. In this paper we introduce a numerical method containing a combined constrained constructive optimisation (CCO) algorithm and host mesh fitting (HMF) algorithm. While the CCO algorithm is used to generate a large liver vascular network, the HMF algorithm morphs hepatic structure within a host mesh. This technique is applied to the liver of the Visible Man (VM), where total 16,300 vessels are generated to extend the 84 digitised portal and hepatic veins in the VM liver. The liver deformation due to respiration effects and heart beats is simulated in real-time (35 Hz) and matched with the video sequence of an endovascular Trans-Arterial Chemo Embolization (TACE) procedure. In conclusion an efficient method for morphing a virtual liver containing large vasculatures is proposed, and may have applications in chemotherapy and endovascular simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hall, J.E.: Guyton and Hall Textbook of Medical Physiology. Elsevier, Amsterdam (2015)

    Google Scholar 

  2. Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Programs Biomed. 77, 183–197 (2005)

    Article  Google Scholar 

  3. Planteféve, R., Peterlik, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44, 139–153 (2016)

    Article  Google Scholar 

  4. Schreiner, W., Buxbaum, P.F.: Computer-optimization of vascular trees. IEEE Trans. Biomed. Eng. 40, 482–491 (1993)

    Article  Google Scholar 

  5. Schwen, L.O., Preusser, T.: Analysis and algorithmic generation of hepatic vascular systems. Int. J. Hepatol. 2012, e357687 (2012)

    Article  Google Scholar 

  6. White, D., Coombe, D., Rezania, V., Tuszynski, J.: Building a 3D virtual liver: methods for simulating blood flow and hepatic clearance on 3D structures. PLoS One 11, e0162215 (2016)

    Article  Google Scholar 

  7. Muller, A., Clarke, R., Ho, H.: Fast blood-flow simulation for large arterial trees containing thousands of vessels. Comput. Methods Biomech. Biomed. Eng. 20, 160–170 (2017)

    Article  Google Scholar 

  8. Clifford, M.A., Banovac, F., Levy, E., Cleary, K.: Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comput. Aided Surg. 7, 291–299 (2002)

    Article  Google Scholar 

  9. Fernandez, J.W., Mithraratne, P., Thrupp, S.F., Tawhai, M.H., Hunter, P.J.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2, 139–155 (2004)

    Article  Google Scholar 

  10. Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Image Anal. 13, 773–784 (2009)

    Article  Google Scholar 

  11. Nordsletten, D.A.: Structural morphology of renal vasculature. AJP: Heart Circul. Physiol. 291, H296–H309 (2006)

    Google Scholar 

  12. Ho, H., Sorrell, K., Bartlett, A., Hunter, P.: Modeling the hepatic arterial buffer response in the liver. Med. Eng. Phys. 35, 1053–1058 (2013)

    Article  Google Scholar 

  13. Zamir, M.: On fractal properties of arterial trees. J. Theor. Biol. 197, 517–526 (1999)

    Article  Google Scholar 

  14. Marescaux, J., Rubino, F., Arenas, M., Mutter, D., Soler, L.: Augmented-reality-assisted laparoscopic adrenalectomy. JAMA 292, 2214–2215 (2004)

    Google Scholar 

  15. Ackerman, M.J.: The visible human project: a resource for education. Acad. Med. 74(6), 667–670 (1999)

    Article  Google Scholar 

  16. Fasel, J.H., et al.: Liver of the “visible man”. Clin. Anat. 10, 389–393 (1997)

    Article  Google Scholar 

  17. Moré, J., Sorensen, D.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MathSciNet  Google Scholar 

  18. Meyer, K., et al.: A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell Syst. 4, 277–290.e9 (2017)

    Article  Google Scholar 

  19. Yu, H.B., Ho, H.: System designs for augmented reality based ablation probe tracking. In: Paul, M., Hitoshi, C., Huang, Q. (eds.) PSIVT 2017. LNCS, vol. 10749, pp. 87–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75786-5_8

    Chapter  Google Scholar 

  20. Angulo, P.: Nonalcoholic fatty liver disease. N. Engl. J. Med. 346(16), 1221–1231 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berg, M., Zhang, C., Ho, H. (2020). Real-Time Morphing of the Visible Man Liver with Intrahepatic Vasculatures. In: Cree, M., Huang, F., Yuan, J., Yan, W. (eds) Pattern Recognition. ACPR 2019. Communications in Computer and Information Science, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-15-3651-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3651-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3650-2

  • Online ISBN: 978-981-15-3651-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics