Skip to main content

Synthesis of ZnO Nanostructures Using RTCVD, Suitable for Various Applications

  • Conference paper
  • First Online:
Advances in Solar Power Generation and Energy Harvesting

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 391 Accesses

Abstract

Zinc oxide (ZnO) nanostructures have been successfully synthesized using rapid thermal chemical vapor deposition (RTCVD) technique under ambient oxygen environment. During the growth of ZnO nanostructure, the gas pressure of oxygen was maintained at 5 Torr, and the low pressure inside the growth chamber was kept of the order of 10−6 Torr in order to increase the vapor pressure during sublimation. The morphological and application aspects of the grown ZnO nanostructures were studied at room temperature and at LN2 temperature. Different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX) and UV–Vis spectroscopy have been performed for elemental analysis, crystalline nature, shape, size and band gap calculation of as-grown ZnO nanostructure. The results exhibited that grown ZnO nanostructures have various applications including solar cells and supercapacitor for energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A. Khan, V.A. Fonoberov, M. Shamsa, A.A. Balandina, et al. J. Appl. Phys. 97, 124313 (2005)

    Google Scholar 

  2. V.A. Fonoberov, A.A. Balandin, et al. J. Nanoelect. Optoele. 1, 19 (2006)

    Google Scholar 

  3. B. Sunandan, J. Dutta et al., Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  4. Y. Boqian, F. Peterxian, A. Kumar, R.S. Katiyar, M. Achermann, et al. J. Phys. D: Appl. Phys. 42, 195402 (2009)

    Google Scholar 

  5. L.I. Yang, M.W. Paul, L. Yin, T.B. Scott et al., Nanotechnology 18, 215602 (2007)

    Article  Google Scholar 

  6. A. Umar, C. Ribeiro, A.-Al. Hajry, Y. Masuda, Y.B. Hahn et al. J. Phys. Chem. C, 113, 14715 (2009)

    Google Scholar 

  7. M.C. Newton, S. Firth, T. Matsuura, P.A. Warburton, et al. J. Phy.: Conf. Ser. 26, 251 (2006)

    Google Scholar 

  8. S. Shishiyanua, L. Chowb, O. Lupana, T. Shishiyanua et al., ECS Trans. 3, 65 (2006)

    Google Scholar 

  9. V.V. Ursaki, I.O. Lupan, L. Chow, L.M. Tiginyanu, V.V. Zalamai, et al. Solid State Comm. 143, 437 (2007)

    Google Scholar 

  10. H. Zeng, W. Cai, B. Cao, J. Hu, Y. Li, P. Liu et al., Appl. Phy. Lett. 88, 181905 (2006)

    Article  Google Scholar 

  11. S. Chaudhary, A. Umar, K.K. Bhasin, S. Bakoutas et al., Materials 11, 1–38 (2018)

    Article  Google Scholar 

  12. H.H. Cheng, H.M. Cheng, C.Y. Wu, H.S. Huang, Y.C. Lee, W.F. Hsieh et al., Nanotechnology 17, 1404 (2006)

    Article  Google Scholar 

  13. T.S. Ko, S. Yang, H.C. Hsu, C.P. Chu, H.F. Lin, S.C. Liao, T.C. Lu, H.C. Kuo, W.F. Hsieh, C.S. Wang et al., Mat. Sci. Engg. B 134, 54 (2006)

    Article  Google Scholar 

  14. M. Lucas, Z.L. Wang, E. Riedo et al., Appl. Phy. Lett. 95, 051904 (2009)

    Article  Google Scholar 

  15. D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao et al., Cryst. Res. Tech. 43, 1041 (2008)

    Article  Google Scholar 

  16. J. Fan, H.R. Scholz, F.M. Kolb, M. Zacharias, U. G¨osele, F. Heyroth, C. Eisenschmidt, T. Hempel, et al. J. Christen, Appl. Phys. A, 79, 1895 (2004)

    Google Scholar 

  17. D. Pradhan, M. Kumar, Y. Ando, K.T. Leung et al., Nanotechnology 19, 035603 (2008)

    Article  Google Scholar 

  18. H.J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. G¨osele, M. Zacharias et al., Nanotechnology 17, S231–S239 (2006)

    Article  Google Scholar 

  19. M. Laurenti, V. Cauda et al., Nanomaterials 7, 1–34 (2017)

    Article  Google Scholar 

  20. S.S. Bhat, A. Qurashi, F.A. Khanday et al., TrAc Trend Anal. Chem. 86, 1–13 (2017)

    Article  Google Scholar 

  21. R. Wahab, Y.S. Kim, D.S. Lee, J.M. Seo, H.S. Shin et al., Sci. Adv. Mater. 2, 35–42 (2010)

    Article  Google Scholar 

  22. D.P. Singh et al., Sci. Adv. Mater. 2, 245–272 (2010)

    Article  Google Scholar 

  23. R. Ding, J. Liu, J. Jiang, X. Ji, X. Li, F. Wu, X. Huang, et al. Sci. Adv. Mater. 2, 396–401 (2010)

    Google Scholar 

  24. A. Khan, S.N. Khan, W.M. Jadwisienczak et al., Sci. Adv. Mater. 2, 572–577 (2010)

    Article  Google Scholar 

  25. Y. Zhu, Y. Chen, C. Jia, X. Zhang et al., J. Nanosci. Nanotechnol. 10, 8204–8209 (2010)

    Article  Google Scholar 

  26. H. Ghayour, A.A. Nourbakhsh, S. Mirdamadi, R.H. Rezaei, et al. J. Nanosci. Nanotechnol. 10, 7455–7458 (2010)

    Google Scholar 

  27. L. Irimpan, N.P.V. Nampoori, P. Radhakrishnan et al., Sci. Adv. Mater. 2, 578–582 (2010)

    Article  Google Scholar 

  28. F.G. Guo, Y. Wang, Q. Liu et al., J. Nanosci. Nanotechnol. 10, 7167–7170 (2010)

    Article  Google Scholar 

  29. H. Zeng, J. Cui, B. Cao, U. Gibson, Y. Bando, D. Golberg et al., Sci. Adv. Mater. 2, 336–358 (2010)

    Article  Google Scholar 

  30. N.T. Soitah, Y. Chunhui, S. Liang et al., Sci. Adv. Mater. 2, 534–538 (2010)

    Article  Google Scholar 

  31. H.Y. Ko, S.J. Yu et al., J. Nanosci. Nanotechnol. 10, 8095–8101 (2010)

    Article  Google Scholar 

  32. W. Wu, S. Bai, N. Cui, F. Ma, Z. Wei, Y. Qin, E. Xie et al., Sci. Adv. Mater. 2, 402–406 (2010)

    Article  Google Scholar 

  33. K.S. Mohanta, C.D. Kim, H.B. Kong, K.H. Cho, W. Liu, S. Tripathy, et al. Sci. Adv. Mater. 2, 64–68 (2010)

    Google Scholar 

  34. K.B. Sharma, N. Khare, M. Kumar, et al. J. Nanosci. Nanotechnol. 10, 8424–8431 (2010)

    Google Scholar 

  35. T. Han, X. Li, X. Zahang, J. Liu, J. Li et al., Adv. Cond. Matter. Physics 2017, 4859863–4859870 (2017)

    Google Scholar 

  36. S.J. Young, C.C. Yang, L.T. Lai et al., J. Electrochem. Soc. 164, B3013–B3028 (2017)

    Article  Google Scholar 

  37. K.W. Guo et al., J. Appl. Biotechnol. Bioeng. 2, 197–202 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zulfequar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keshwar Kumar, R., Kumar, A., Husain, S., Husain, M., Zulfequar, M. (2020). Synthesis of ZnO Nanostructures Using RTCVD, Suitable for Various Applications. In: Jain, V., Kumar, V., Verma, A. (eds) Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-3635-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3635-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3634-2

  • Online ISBN: 978-981-15-3635-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics