Skip to main content

Numerical Solution of Space and Time Fractional Advection–Diffusion Equation by Meshless Approach

  • Conference paper
  • First Online:
  • 689 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 320))

Abstract

In this paper, fractional version of advection–diffusion equation (FADE) has been considered for the numerical solution. It is acquired from the classical advection–diffusion equation (ADE) by substituting the space and time derivatives with a generalized Caputo fractional derivative. Moreover, we have proposed novel discretization for space and time using radial basis functions and Chebyshev polynomials, respectively. The proposed scheme is truly meshless thereby able to manage both space and time fractional derivatives simultaneously with appropriate boundary conditions. Lastly, we have discussed numerical example to affirm this proposed scheme whilst revealing the accuracy and performance of the same.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, W., Li, C.: Second-order explicit difference schemes for the space fractional advection diffusion equation. Appl. Math. Comput. 257, 446–457 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Xu, Y., He, Z., Xu, Q.: Numerical solutions of fractional advection–diffusion equations with a kind of new generalized fractional derivative. Int. J. Comput. Math. 91, 588–600 (2014)

    Article  MathSciNet  Google Scholar 

  3. Garg, M., Manohar, P.: Numerical solution of fractional diffusion-wave equation with two space variables by matrix method. Fract. Calc. Appl. Anal. 13, 191–207 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Ahmed, S.: A numerical algorithm for solving advection-diffusion equation with constant and variable coefficients. J. Open Numer. Methods 4, 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  5. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  6. Gόmez, F., Escalante, E., Calderόn, C., Morales, L., González, M., Laguna, R.: Analytical solutions for the fractional diffusion-advection equation describing super-diffusion. Open Phys. 14, 668–675 (2016)

    Google Scholar 

  7. Agarwal, R., Jain, S., Agarwal, R.: Analytic solution of generalized space time advection-dispersion equation with fractional Laplace operator. J. Nonlinear Sci. Appl. 9, 3545–3554 (2016)

    Article  MathSciNet  Google Scholar 

  8. Safari, M., Danesh, M.: Application of Adomians decomposition method for the analytical solution of space fractional diffusion equation. Adv. Pure Math. 1, 345–350 (2011)

    Article  Google Scholar 

  9. Zhang, S., Liu, M., Zhang, L.: Variable separation for time fractional advection-dispersion equation with initial and boundary conditions. Therm. Sci. 20, 789–792 (2016)

    Article  Google Scholar 

  10. Javadi, S., Jani, M., Babolian, E.: A numerical scheme for space-time fractional advection-dispersion equation. Int. J. Nonlinear Anal. Appl. 7, 331–343 (2015)

    MATH  Google Scholar 

  11. Parvizi, M., Eslahchi, M., Dehghan, M.: Numerical solution of fractional advection-diffusion equation with a nonlinear source term. Numer. Algorithms 68, 601–629 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cao, J., Li, C., Chen, Y.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)

    Article  MathSciNet  Google Scholar 

  13. Arshad, S., Baleanu, D., Huang, J., Al Qurashi, M.M., Tang, Y., Zhao, Y.: Finite difference method for time-space fractional advection-diffusion equations with Riesz derivative. Entropy 20, 321 (2018)

    Google Scholar 

  14. Jafari, H., Tajadodi, H.: Numerical solutions of the fractional advection-dispersion equation. Prog. Fract. Differ. Appl 1, 37–45 (2015)

    Google Scholar 

  15. Lian, Y., Wagner, G.J., Liu, W.K.: A meshfree method for the fractional advection-diffusion equation. In: Meshfree Methods for Partial Differential Equations VIII, vol. 115, pp. 53–66. Springer (2017)

    Google Scholar 

  16. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  Google Scholar 

  17. Deng, Z.Q., Singh, V.P., Bengtsson, L.: Numerical solution of fractional advection-dispersion equation. J. Hydraul. Eng. 130, 422–431 (2004)

    Article  Google Scholar 

  18. Jain, M.K., Iyengar, S.R., Jain, R.K.: Numerical Methods: Problems and Solutions. New Age International (2007)

    Google Scholar 

  19. El-Baghdady, G.I., El-Azab, M.: Chebyshev–Gauss–Lobatto pseudo-spectral method for one-dimensional advection–diffusion equation with variable coefficients. Sohag J. Math. 3, 1–8 (2016)

    Article  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier (1998)

    Google Scholar 

  21. Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 201–216 (1999)

    Google Scholar 

  22. Powell, M.: The Theory of Radial Basis Function Approximation in 1990. Clarendon (1992)

    Google Scholar 

  23. Fornberg, B., Flyer, N.: Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids. Adv. Comput. Math. 23, 5–20 (2005)

    Article  MathSciNet  Google Scholar 

  24. Bansu, H., Kumar, S.: Numerical solution of space and time fractional telegraph equation: a meshless approach. Int. J. Nonlinear Sci. Numer. Simul. 20(3–4), 325–337 (2019)

    Google Scholar 

  25. Hanert, E., Piret, C., et al.: Numerical solution of the space-time fractional diffusion equation: alternatives to finite differences. In: 5th IFAC Symposium on Fractional Differentiation and Its Applications-FDA2012 (2012)

    Google Scholar 

  26. Laub, A.J.: Matrix Analysis for Scientists and Engineers, vol. 91. Siam (2005)

    Google Scholar 

  27. Fazio, R., Jannelli, A., Agreste, S.: A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term. Appl. Sci. 8, 960 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Bansu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bansu, H., Kumar, S. (2020). Numerical Solution of Space and Time Fractional Advection–Diffusion Equation by Meshless Approach. In: Bhattacharyya, S., Kumar, J., Ghoshal, K. (eds) Mathematical Modeling and Computational Tools. ICACM 2018. Springer Proceedings in Mathematics & Statistics, vol 320. Springer, Singapore. https://doi.org/10.1007/978-981-15-3615-1_16

Download citation

Publish with us

Policies and ethics