Skip to main content

Atmospheric Transport of Radionuclides Initially Released as a Result of the Chernobyl Accident

  • Chapter
  • First Online:

Abstract

A brief overview of the characteristics of the Chernobyl release is provided here, including the radionuclide release activity, radionuclide and physicochemical composition of the release, and the available estimates of the temporal dynamics of the released materials and the release initial height. An overview of the meteorological conditions of emission transport is given. The main results of the measurements of radioactive contamination due to the Chernobyl accident on different spatial scales are presented, including within the Chernobyl exclusion zone and over Europe. The results of modeling the radionuclide atmospheric transport and their deposition on the underlying surface, including the results of the reconstruction of the emission source parameters, are given. The review of the measurement of radioactive contamination of air and the underlying surface with iodine isotopes during an initial stage of the accident is given, the same as the results of a reconstruction of the iodine contamination fields in the territory of Ukraine, Belarus, and Russia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albergel A, Martin D, Strauss B, Gross JM (1988) The Chernobyl accident: modelling of dispersion over Europe of the radioactive plume and comparison with activity measurements. Atmos Environ 22:2431–2444

    Article  CAS  Google Scholar 

  • Andriesse CD, Tanke RH (1984) Dominant factor in the release of fission products from overheated urania. Nucl Technol 65:415–421

    Article  CAS  Google Scholar 

  • Aoyama M, Hirose K, Suzuki Y, Inoue H, Sugimura Y (1986) High level radioactive nuclides in Japan in May. Nature 321:819–820

    Article  CAS  Google Scholar 

  • ApSimon HM, Wilson JJN (1987) Modelling atmospheric dispersal of the Chernobyl release across Europe. Bound-Lay Meterol 41:123–133

    Article  Google Scholar 

  • ApSimon HM, Simms KL, Collier CG (1988) The use of weather radar in assessing deposition of radioactivity from Chernobyl across England and Wales. Atmos Environ 22(9):1895–1900

    Article  CAS  Google Scholar 

  • ApSimon HM, Wilson JJN, Simms KL (1989) Analysis of the dispersal and deposition of radionuclides from Chernobyl across Europe. Proc R Soc Lond Ser A 425:365–405

    Article  CAS  Google Scholar 

  • Balonov MI, Bruk GY, Golikov VY, Erkin VG, Zvonova IA, Parkhomenko VI, Shutov VN (1996) Exposure of the population in the Russian Federation as a result of the Chernobyl accident. Radiat Risk 7:8–48

    Google Scholar 

  • Bartnicki J, Salbu B, Saltbones J, Foss A, Lind OC (2001) Gravitational settling of particles in dispersion model simulations using the Chernobyl accident as a test case. DNMI research report no. 131. Norwegian Meteorological Institute (DNMI), Oslo

    Google Scholar 

  • Begichev SN, Borovoi АА, Burlakov ЕV et al (1990) Fuel of unit 4 reactor at the Chernobyl NPP (Short reference book). Kurchatov Institute of Atomic Energy, Moscow. Preprint 5268/3

    Google Scholar 

  • Bieringer PE, Young GS, Rodriguez LM, Annunzio AJ, Vandenberghe F, Haupt SE (2017) Paradigms and commonalities in atmospheric source term estimation methods. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2017.02.011

  • BNR (Belarus National Report) (2001) 15 Years after the Chernobyl accident: consequences in the Republic of Belarus and their overcoming. BNR, Minsk. (in Russian)

    Google Scholar 

  • BNR (Belarus National Report) (2011) A quarter of a century after the Chernobyl disaster: results and prospects for overcoming. BNR, Minsk. (in Russian)

    Google Scholar 

  • Bocquet M (2012) Parameter field estimation for atmospheric dispersion: application to the Chernobyl accident using 4D-Var. Q J Roy Meteorol Soc 138:664–681

    Article  Google Scholar 

  • Bondietti EA, Brantley JN (1986) Characteristics of Chernobyl radioactivity in Tennessee. Nature 322:313–314

    Article  CAS  Google Scholar 

  • Bonelli P, Calori G, Finzi G (1992) A fast long-range transport model for operational use in episode simulation. Application to the Chernobyl accident. Atmos Environ 26A(14):2523–2535

    Article  CAS  Google Scholar 

  • Borisov NB, Ogorodnikov BI, Skitovich VI et al (1990) Composition and concentration of radioiodine in the atmosphere during the Chernobyl accident and a four-year post-emergency period. In: Proceedings of the 2nd all-union meeting following the liquidation of the accident, Chernobyl, 2–11. (in Russian)

    Google Scholar 

  • Borovoi A (1992) Characteristics of the nuclear fuel of power unit No.4 of Chernobyl NPP. In: Kryshev II (ed) Radioecological consequences of the Chernobyl accident. Nuclear Society International, Moscow, pp 9–20

    Google Scholar 

  • Borovoi AA, Gagarinskii AY (2001) Emission of radionuclides from the destroyed unit of the Chernobyl nuclear power plant. Atom Energy 90:153–161

    Article  CAS  Google Scholar 

  • Borzilov VA, Klepikova NV (1993) Effect of meteorological conditions and release composition on radionuclide deposition after the Chernobyl accident. In: Mervin SE, Balonov M (eds) The Chernobyl papers, Doses to the Soviet population and early health effects studies, vol 1. REPS, Washington, DC, pp 47–70

    Google Scholar 

  • Borzilov VA, Klepikova NV, Kostrikov AA, Trojanova NI, Khvalensky YF (1988) Meteorological conditions of long-distance transport of radionuclides released into the atmosphere due to the Chernobyl accident. In: Radiation aspects of the Chernobyl accident: proceedings of the 1st All-Union conference, Obninsk, June 1988. Vol. 1. Radioactive contamination of environment. Hydrometeoizdat, St.-Petersburg, pp 87–92. (in Russian)

    Google Scholar 

  • Brandt J, Christensen JH, Frohn LM (2002) Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmos Chem Phys 2:397–417

    Article  CAS  Google Scholar 

  • Broda R (1987) Gamma spectroscopy analysis of hot particles from the Chernobyl fallout. Acta Phys Polonica B18:935–950

    CAS  Google Scholar 

  • Buzulukov YP, Dobrynin YL (1993) Release of radionuclides during the Chernobyl accident. In: Mervin SE, Balonov M (eds) The Chernobyl papers. Vol.1. Doses to the Soviet population and early health effects studies. REPS, Washington, DC, pp 3–21

    Google Scholar 

  • Cambray RS, Cawse PA, Garland JA, Gibson JAB, Johnson P, Lewis GNJ, Newton D, Salmon L, Wade BO (1987) Observations on radioactivity from the Chernobyl accident. Nucl Energy 26:77–101

    CAS  Google Scholar 

  • Davoine X, Bocquet M (2007) Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmos Chem Phys 7:1549–1564

    Article  CAS  Google Scholar 

  • De Cort M, Dubois G, Fridman SD, Germenchuk MG, Izrael YA, Janssens A et al (1998) Atlas of cesium deposition on Europe after the Chernobyl accident. EUR Report Nr. 16733. Office for Official Publications of the European Communities, Brussels-Luxemburg

    Google Scholar 

  • Desiato F (1992) A long-range dispersion model evaluation study with Chernobyl data. Atmos Environ 26A(15):2805–2820

    Article  CAS  Google Scholar 

  • Devell L (1988) Nuclide composition of Chernobyl hot particles. In: Von Philipsborn H, Steinhausler F (eds) Hot particles from the Chernobyl fallout. Proceedings of an international workshop held in Theuern, 28–29 Oct 1987. Bergbau- und Industriemuseum, Ostbauern, Band 16, Theuern, pp 23–34

    Google Scholar 

  • Devell L, Güntay S, Powers DA (1996) The Chernobyl reactor accident source term. Development of a consensus view. NEA/CSNI/R(95)24

    Google Scholar 

  • Devell L, Tovedal H, Bergström U, Appelgren A, Chyssler J, Andersson L (1986) Initial observations of fallout from the reactor accident at Chernobyl. Nature 321:192–193

    Article  CAS  Google Scholar 

  • Dobrynin YL, Khramtsov PB (1993) Data verification methodology and new data for Chernobyl source term. Radiat Prot Dosimetry 50:307–310

    Article  CAS  Google Scholar 

  • Drozdovitch V, Zhukova O, Germenchuk M, Khrutchinsky A, Kukhta T, Luckyanov N, Minenko V, Podgaiskaya M, Savkin M, Vakulovsky S, Voillequé P, Bouville A (2013) Database of meteorological and radiation measurements made in Belarus during the first three months following the Chernobyl accident. J Environ Radioact 116:84–92

    Article  CAS  Google Scholar 

  • EGE (2005) Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the UN Chernobyl Forum Expert Group “environment”. IAEA, Vienna

    Google Scholar 

  • Ehrhardt J (1997) The RODOS system: decision support for off-site emergency management in Europe. Nucl Technol Publ 1–4:35–40

    Google Scholar 

  • Ermilov A, Ziborov A (1993) Radionuclide relations in the fuel component of the radioactive fallout in the near Chernobyl NPP. Radiat Risk 3:134–138

    Google Scholar 

  • Evangeliou N, Balkanski Y, Cozic A, Møller AP (2013) Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl Nuclear Power Plant accident: influence of varying emission-altitude and model horizontal and vertical resolution. Atmos Chem Phys 13:7183–7198

    Article  CAS  Google Scholar 

  • Evangeliou N, Hamburger T, Talerko N, Zibtsev S, Bondar Y, Stohl A, Balkanski Y, Mousseau T, Møller A (2016) Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environ Pollut 216:408–418

    Article  CAS  Google Scholar 

  • Galmarini S, Graziani G, Tassone C (1992) The atmospheric long range transport model LORAN and its application to Chernobyl release. Environ Softw 7:143–154

    Article  Google Scholar 

  • Gavrilin Y, Khrouch V, Shinkarev S et al (2004) Case-control study of Chernobyl-related thyroid cancer among children of Belarus. Part I: estimation of individual thyroid doses resulting from intakes of 131I, short-lived radioiodines (132I, 133I, 135I), and short-lived radiotelluriums (131mTe and 132Te). Health Phys 86:565–585

    Article  CAS  Google Scholar 

  • Gavrilin Y (2001) Consequences of two scenarios for the development of the accident at the Chernobyl NPP. Bull Atom Energ 8:20–28. (in Russian)

    Google Scholar 

  • Georgi B, Helmeke H-J, Hietel B, Tschiersch J (1988) Particle size distribution measurements after the Chernobyl accident. In: von Philipsborn HV, Steinhausler F (eds) Hot particles from the Chernobyl fallout. Proceedings of an international workshop held in Theuem, 28–29 Oct 1987. Bergbau- und Industriemuseum, Ostbauern, Band 16, Theuern, pp 39–52

    Google Scholar 

  • Germenchuk MG, Zhukova OM, Shagalova ED, Matweenko II (1996) Methodical approaches to the reconstruction of iodine-131 deposition and the features of its distribution over the Belorussian territory after the Chernobyl accident. Med Biol Aspects Chernobyl Accident 4:72–78. (in Russian)

    Google Scholar 

  • GKIAE (Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Energii) SSSR, Moscow (1986) The accident at the Chernobyl nuclear power plant and its consequences (INIS-mf–10523). International Atomic Energy Agency, Vienna

    Google Scholar 

  • Golubenkov AV, Borodin RV, Soifer A (1996) RECASS source term estimation sub-system and its application for reconstruction of the source rate of the chernobyl accident. Radiat Prot Dosimetry 64(1-2):49–55

    Article  Google Scholar 

  • Gudiksen PH, Harvey TF, Lange R (1989) Chernobyl source term, atmospheric dispersion, and dose estimation. Health Phys 57(5):697–706

    Article  CAS  Google Scholar 

  • Güntay S, Powers DA, Devell L (1996) The Chernobyl reactor accident source term: development of a consensus view. One decade after Chernobyl: summing up the consequences of the accident. In: IAEA-TECDOC-964, vol 2. IAEA, Vienna, pp 183–193

    Google Scholar 

  • Haas H, Memmesheimer M, Geiss H, Jakobs HJ, Laube M, Ebel A (1990) Simulation of the Chernobyl radioactive cloud over Europe using the EURAD model. Atmos Environ 24A:673–692

    Article  Google Scholar 

  • Hoe S, McGinnity P, Charnock T et al (2009) ARGOS decision support system for emergency management. Technical University of Denmark, Kongens Lyngby. http://orbit.dtu.dk/files/3924948/Hoe_paper.pdf

    Google Scholar 

  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP (2003) Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Sci Total Environ 308:97–109

    Article  CAS  Google Scholar 

  • Hutchinson M, Oh H, Chen W-H (2017) A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inform Fusion 36:130–148

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency) (1986) Summary report on the post-accident review meeting on the Chernobyl accident, safety series no. 75-INSAG-1. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1992) The chernobyl accident: updating of INSAG-1. A report by the International Nuclear Safety Advisory Group, safety series no. 75-INSAG-7. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2006) Environmental consequences of the chernobyl accident and their remediation: twenty years of experience. Report of the UN Chernobyl Forum Expert Group “environment”. IAEA, Vienna

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (2011) Radioactive particles in the environment: sources, particle characterization and analytical techniques. TECDOC-1663. IAEA, Vienna

    Google Scholar 

  • Ilyin LA, Arkhangelskaya GV, Konstantinov YO, Likhtarev IA (1972) Radioactive iodine in the radiation safety problem. Atomizdat, Moscow. (in Russian)

    Google Scholar 

  • Ishikawa H (1995) Evaluation of the effect of horizontal diffusion on the long-range atmospheric transport simulation with Chernobyl data. J Appl Meteorol 34:1653–1665

    Article  Google Scholar 

  • Ivanov Y, Kashparov V, Sandalls J, Laptev G, Victorova N, Kruglov A, Salbu B, Oughton D, Arkhipov N (1996) Fuel component of ChNPP release fallout: properties and behaviour in the environment. In: The radiological consequences of the Chernobyl accident. IAEA, Vienna, pp 173–177

    Google Scholar 

  • Izrael YA, Petrov VN, Severov DА (1987) Modelling of radioactive deposition in the near zone of the Chernobyl nuclear power station. Meteorol Gidrol 7:5–12. (in Russian)

    Google Scholar 

  • Izrael YA, Petrov VN, Severov DА (1989) Regional model of radionuclide transport and deposition after the accident at the Chernobyl NPP. Meteorol Gidrol 6:5–14. (in Russian)

    Google Scholar 

  • Izrael YuA, Vakulovskii SM, Vetrov VA, Petrov VN, Rovinsky FYA, Stukin ED (1990) Chernobyl: radioactive contamination of the environment. Gidrometeoizdat, Leningrad. (in Russian)

    Google Scholar 

  • Jaworowski Z, Kownacka L (1988) Tropospheric and stratospheric distributions of radioactive iodine and cesium after the Chernobyl accident. J Environ Radioact 6:145–150

    Article  CAS  Google Scholar 

  • Jost DT, Gaggeler HW, Baltensperger U, Zinder B, Haller P (1986) Chernobyl fallout in size-fractionated aerosol. Nature 321:22

    Article  Google Scholar 

  • JRC (2015) Radioactivity environmental monitoring (REM). European Union – Joint Research Centre, Ispra. http://rem.jrc.ec.europa.eu/RemWeb/Index.aspx#

    Google Scholar 

  • Kashparov VA (2001) Formation and dynamics of radioactive contamination of the environment during the accident at the Chernobyl NPP and in the post-accidental period. In: Cheornobyl. The exclusion zone. Naukova Dumka, Kyiv, pp 11–46. (in Ukrainian)

    Google Scholar 

  • Kashparov VA (2016) Chernobyl: 30 years of radioactive contamination legacy report. Ukrainian Institute of Agricultural Radiology, Kyiv

    Google Scholar 

  • Kashparov VA, Ahamdach N, Zvarich SI, Yoschenko VI, Maloshtan IM, Dewiere L (2004) Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. J Environ Radioact 72:335–353

    Article  CAS  Google Scholar 

  • Kashparov VA, Ivanov YA, Zvarich SI, Protsak VP, Khomutinin YV, Kurepin AD, Pazukhin EM (1996) Formation of hot particles during the Chernobyl nuclear power plant accident. Nucl Technol 114:246–253

    Article  CAS  Google Scholar 

  • Kashparov VA, Kalinina GV, Ivliev AI, Cherkisyan VO (1995) Hot particles in soil from Chernobyl AES region. Radiat Meas 25(1-4):413–414

    Article  Google Scholar 

  • Kashparov VA, Lundin SM, Khomutinin YV, Kaminsky SP, Levtchuk SE, Protsak VP, Kadygrib AM, Zvarich SI, Yoschenko VI, Tschiersch J (2001) Soil contamination with 90Sr in the Chernobyl accident near-field. J Environ Radioact 56(3):285–298

    Article  CAS  Google Scholar 

  • Kashparov VA, Lundin SM, Zvarich SI, Yoschenko VI, Levtchuk SE, Khomutinin YV, Maloshtan IN, Protsak VP (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317(1–3):105–119

    Article  CAS  Google Scholar 

  • Kashparov VA, Oughton DH, Zvarich SI, Protsak VP, Levchuk SE (1999) Kinetics of fuel particle weathering and 90Sr mobility in the Chernobyl 30-km exclusion zone. Health Phys 76(3):251–259

    Article  CAS  Google Scholar 

  • Katata G, Chino M, Kobayashi T, Terada H, Ota M, Nagai H, Kajino M, Draxler R, Hort MC, Malo A, Torii T, Sanada Y (2015) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos Chem Phys 15:1029–1070

    Article  CAS  Google Scholar 

  • Kauppinen EI, Hillamo RE, Aaltonen SH, Sinkko KTS (1986) Radioactivity size distributions of ambient aerosols in Helsinki, Finland, during May 1986 after Chernobyl accident: preliminary report. Environ Sci Technol 20(12):1257–1259

    Article  CAS  Google Scholar 

  • Kerekes A, Falk R, Suomela J (1991) Analysis of hot particles collected in Sweden after the Chernobyl accident. SSI-rapport 91-02. Statens Stralskyddinstitut, Stockholm

    Google Scholar 

  • Khrushchinskii AA, Kuten’ SA, Minenko VF, Zhukova OM, Podgaiskaya AA, Germenchuk MG, Kukhta TA, Vakulovskii SM, Drozdovitch VV (2014) Radionuclide ratios in precipitation on the territory of Belarus after the Chernobyl accident: calculation from gamma-spectrometric measurements on soil in May–July 1986. Atom Energy 117(2):143–148

    Article  CAS  Google Scholar 

  • Kirchner G, Noack CC (1988) Core history and nuclide inventory of the Chernobyl core at the time of accident. Nucl Safety 29:1–5

    CAS  Google Scholar 

  • Klepikova NV, Freinmunt GN, Ladeikin YA, Kamaev DA (2010) Method for estimation of a source parameters using measurements in the near zone. In: Problems of hydrometeorology and monitoring of environment, vol 3. Obninsk, SPA Typhoon, pp 164–176. (in Russian)

    Google Scholar 

  • Klug W, Graziani G, Pierce D, Tassone C (1992) Evaluation of long range atmospheric models using environmental radioactivity data from the Chernobyl accident. Elsevier Science Publishers, Barking, England, ATMES Report

    Google Scholar 

  • Knatko VA, Dorozhok IN (2002) Estimation of thyroid doses from inhalation of 131I for population of contaminated regions of Belarus. In: Imanaka T (ed) Recent research activities about the Chernobyl NPP accident in Belarus, Ukraine and Russia. Research Reactor Institute, Kyoto University, Kyoto, pp 160–167

    Google Scholar 

  • Knox JB, Dickerson MB (1986) ARAC (Atmospheric Release Advisory Capability) preliminary dose estimates for Chernobyl reactor accident. Lawrence Livermore National Laboratory, Livermore, CA

    Google Scholar 

  • Konoplev AV, Borzilov VA, Bobovnikova CI et al (1988) Distribution of radionuclides deposited after the accident at the Chernobyl NPP in the “soil-water” system. Meteorol Gidrol 12:63–74. (in Russian)

    Google Scholar 

  • Konoplev A (2020) Mobility and bioavailability of the Chernobyl-derived radionuclides in soil-water environment: review. In: Konoplev A, Kato K, Kalmykov SN (eds) Behavior of radionuclides in the environment II: Chernobyl. Springer Nature, Singapore, pp 157–193

    Google Scholar 

  • Kritidis P, Catsaros N, Probonas M (1988) Hot particles in Greece after the Chernobyl accident, estimations on inhalation probability. In: von Philipsborn HV, Steinhausler F (eds) Hot particles from the Chernobyl fallout. Proceedings of an international workshop held in Theuern, 28–29 Oct 1987. Bergbau- und Industriemuseum, Ostbauern, Band 16, Theuern, pp 115–120

    Google Scholar 

  • Kruk JE, Pröhl G, Kenigsberg JI (2004) A radioecological model for thyroid dose reconstruction of the Belarus population following the Chernobyl accident. Radiat Environ Biophys 43:101–110

    Article  CAS  Google Scholar 

  • Kuriny VD, Ivanov YA, Kashparov VA, Loschilov NA, Protsak VP, Yudin EB, Zhurba MA, Parshakov AE (1993) Particle-associated Сhernobyl fall-out in the local and intermediate zones. Ann Nucl Energy 20:415–420

    Article  CAS  Google Scholar 

  • Kutkov VA, Arefieva ZS, Muravev YB et al (1995) Unique form of airborne radioactivity: nuclear fuel “hot particles” released during the Chernobyl accident. In: Environmental impact of radioactive releases. Proceedings of a symposium, Vienna, 8–12 May 1995. IAEA, Vienna, pp 625–630

    Google Scholar 

  • Langner J, Robertson L, Persson C, Ullerstig A (1998) Validation of the operational emergency response model at the Swedish Meteorological and Hydrological Institute using data from ETEX and the Chernobyl accident. Atmos Environ 32:4325–4333

    Article  CAS  Google Scholar 

  • Larsen RJ, Haagenson PL, Reiss NM (1989) Transport processes associated with the initial elevated concentrated of Chernobyl radioactivity in surface air in the United States. J Environ Radioact 10:1–18

    Article  CAS  Google Scholar 

  • de Leeuw FAAM, van Aalst RM, van Dop H (1988) Modelling of transport and deposition over Europe of radionuclides from the Chernobyl accident. In: Air pollution modeling and its application VIII: proceedings of the 16th NATO/CCMS international technology meeting, Lindau, 6–10 Apr 1987, New York. NATO/CCMS, London, pp 499–507

    Google Scholar 

  • Likhtarov I, Kovgan L, Masiuk S, Talerko M, Chepurny M, Ivanova O, Gerasymenko V, Boyko Z, Voillequé P, Drozdovitch V, Bouville A (2014) Thyroid cancer study among Ukrainian children exposed to radiation after the Chernobyl accident: improved estimates of the thyroid doses to the cohort members. Health Phys 106(3):370–396

    Article  CAS  Google Scholar 

  • Linnik VG, Sokolov АV, Sokolov PV (2016) Multi scales of Cs-137 contamination levels of the Bryansk region landscapes (according to aerial gamma survey data). In: Shershakov VM (ed) Proceedings of the international scientific and practical conference “Radioactivity after nuclear explosions and accidents: consequences and ways of overcoming” Obninsk, 19–21 Apr. Postoyannyj Komitet Soyuznogo Gosudarstva, Moscow, pp 267–297. (in Russian)

    Google Scholar 

  • Makhon’ko KP (ed) (1990) Guide on organization of environmental monitoring in the area of a nuclear power plant location. Gidrometeoizdat, Leningrad. (in Russian)

    Google Scholar 

  • Makhon’ko KP, Kozlova EG, Volokitin AA (1996) Radioiodine accumulation on soil and reconstruction of doses from iodine exposure on the territory contaminated after the Chernobyl accident. Radiat Risk 7:90–129

    Google Scholar 

  • Michel R, Handl J, Ernst T, Botsch W et al (2005) Iodine-129 in soils from Northern Ukraine and the retrospective dosimetry of the iodine-131 exposure after the Chernobyl accident. Sci Total Environ 340:35–55

    Article  CAS  Google Scholar 

  • Mironov V, Kudrjashov V, Yiou F, Raisbeck GM (2002) Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. J Environ Radioact 59:293–307

    Article  CAS  Google Scholar 

  • Muck K, Prohl G, Likhtarev I, Kovgan L, Meckbach R, Golikov V (2002) A consistent radionuclide vector after the Chernobyl accident. Health Phys 82:141–156

    Article  CAS  Google Scholar 

  • Nair SK, Apostoaei AI, Hoffman FO (2000) A radioiodine speciation, deposition, and dispersion model with uncertainty propagation for the Oak Ridge dose reconstruction. Health Phys 78:394–413

    Article  CAS  Google Scholar 

  • Nakanishi C, Sato S, Furuno A, Terada H, Nagai H, Muto S (2011) WSPEEDI-II system user’s manual for a nuclear or radiological emergency. JAEA Technol 2011-005:141

    Google Scholar 

  • NEA (2002) Chernobyl. Assessment of radiological and health impacts. 2002 update of chernobyl: ten years on. OECD Nuclear Energy Agency, Paris

    Google Scholar 

  • Netterville D (1990) Plume rise, entrainment and dispersion in turbulent winds. Atmos Environ 24:1061–1081

    Article  Google Scholar 

  • Nicholson KW (1988) The dry deposition of small particles: a review of experimental measurements. Atmos Environ 22:2653–2666

    Article  CAS  Google Scholar 

  • Nodop K (ed) (1997) Proceedings ETEX symposium on long-range atmospheric transport, model verification and emergency response, Vienna, 13–16 May, 1997. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Noguchi H, Murata M (1988) Physicochemical speciation of airborne 131I in Japan from Chernobyl. J Environ Radioact 7:65–74

    Article  CAS  Google Scholar 

  • Nosovsky AV, Vasilchenko VN, Kluchnikov AA, Prister BS (2006) Accident at the Chernobyl nuclear power plant: experience of overcoming, lessons learned. Tehnika, Kyiv. (in Russian)

    Google Scholar 

  • Ogorodnikov BI, Pazukhin EM, Kluchnikov AA (2008) Radioactive aerosols of the “Shelter” object. Institute for Safety Problems of NPPs, Chernobyl. (in Russian)

    Google Scholar 

  • Orlov M, Snykov V, Yu K, Volokitin A (1996) Contamination of the soil of the European part of the territory of the USSR with 131I after the Chernobyl nuclear accident. Atom Energy 80(6):439–444

    Article  Google Scholar 

  • Orlov MY, Snykov VP, Khvalenskii YA, Teslenko VP, Korenev AI (1992) Radioactive contamination of the territory of Belorussia and Russia after the Chernobyl Nuclear Power Plant disaster. Atom Energy 72:334–339

    Article  Google Scholar 

  • Osuch S, Dabrowska M, Jaracz P, Kaczanowski J, Van Khoi L, Mirowski S, Piasecki E, Szeflińska G, Szefliński Z, Tropiło J, Wilhelmi Z (1989) Isotopic composition of high-activity particles released in the Chernobyl accident. Health Phys 57(5):707–716

    Article  CAS  Google Scholar 

  • Paatero J, Hameri K, Jaakkola T, Jantunen M, Koivukoski J, Saxen R (2010) Airborne and deposited radioactivity from the Chernobyl accident – a review of investigations in Finland. Boreal Environ Res 15:19–33

    CAS  Google Scholar 

  • Paatero J, Hämeri K, Jantunen M, Hari P, Persson C, Kulmala M, Mattsson R, Hansson H-C, Raunemaa T (2011) Chernobyl: observations in Finland and Sweden. In: Ensor DS (ed) Aerosol Science and technology: history and reviews. RTI Press, Research Triangle Park, NC, pp 339–366

    Google Scholar 

  • Paul M, Fink D, Hollos G, Kaufman A, Kutschera W, Magaritz M (1987) Measurement of iodine-129 concentrations in the environment after the Chernobyl reactor accident. Nucl Instrum Meth B B29:341–345

    Article  CAS  Google Scholar 

  • Persson C, Rodhe H, De Geer L-E (1987) The Chernobyl accident – a meteorological analysis of how radionuclides reached and were deposited in Sweden. Ambio 16(1):20–31

    CAS  Google Scholar 

  • Piedelièvre JP, Musson-Genon L, Bompay F (1990) MEDIA – an Eulerian model of atmospheric dispersion: first validation on the Chernobyl release. J Appl Meteorol 29:1205–1220

    Article  Google Scholar 

  • Pienkowski L, Jastrzebski J, Tys J (1987) Isotopic composition of the radioactive fallout in Eastern Poland after the Chernobyl accident. J Radioanal Nucl Chem 117(6):379–409

    Article  CAS  Google Scholar 

  • Pietruszewski A, Jagielak J, Kozub M, Wołoszyn Z, Sosińska A (1990) High activity and hot particles data for 1986 year samples measured in CLRP after Chernobyl accident. In: International symposium on post-Chernobyl environmental radioactivity studies in East European Countries, Kazimierz Dolny, Poland, 17–19 Sep, pp 127–164

    Google Scholar 

  • Pietrzak-Flis Z, Krajewski P, Radwan I, Muramatsu Y (2003) Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident. Health Phys 84(6):698–708

    Article  CAS  Google Scholar 

  • Pitkevich VA, Duba VV, Ivanov VK, Shershakov VM, Golubenkov АV, Borodin RV, Kosykh VS (1994) Methodology for reconstruction of absorbed external radiation doses for population living on the territory of Russia contaminated due to the ChNPP accident. Radiat Risk 4:95–112

    Google Scholar 

  • Pitkevich VA, Shershakov VM, Duba VV et al (1993) Reconstruction of composition of the Chernobyl radionuclide fallout in the territories of Russia. Radiat Risk 3:62–93

    Google Scholar 

  • Pöllänen R (1997) Highly radioactive ruthenium particles released from Chernobyl accident: particle characteristics and radiological hazard. Radiat Prot Dosimetry 71(1):23–32

    Article  Google Scholar 

  • Pöllänen R (2002) Nuclear fuel particles in the environment – characteristics, atmospheric transport and skin doses. Dissertation. STUK – Radiation and Nuclear Safety Authority, Department of Physics, University of Helsinki, Helsinki

    Google Scholar 

  • Pöllänen R, Valkama I, Toivonen H (1997) Transport of radioactive particles from the Chernobyl accident. Atmos Environ 31:3575–3590

    Article  Google Scholar 

  • Prister BS (2007) Chernobyl disaster: the effectiveness of population protection measures, the experience of international cooperation. Ukrainian Nuclear Society, Kyiv. (in Russian)

    Google Scholar 

  • Pudykiewicz J (1988) Numerical simulation of the transport of radioactive cloud from the Chernobyl nuclear accident. Tellus 408:241–259

    Article  Google Scholar 

  • Puhakka T, Jylhä K, Saarikivi P, Koistinen J (1990) Meteorological factors influencing the radioactive deposition in Finland after the Chernobyl accident. J Appl Meteorol 29:813–829

    Article  Google Scholar 

  • Quélo D, Krysta M, Bocquet M, Isnard O, Minier Y, Sportisse B (2007) Validation of the POLYPHEMUS platform on the ETEX, Chernobyl and Algeciras cases. Atmos Environ 41:5300–5315

    Article  CAS  Google Scholar 

  • Raes F, Graziani G, Stanners D, Girardi F (1990) Radioactivity measurements in air over Europe after the Chernobyl accident. Atmos Environ 24A:909–916

    Article  CAS  Google Scholar 

  • Ramsdell JV Jr, Simonen CA, Burk KW (1994) Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project. PNWD-2224 HEDR; UC-000. Battelle Pacific Northwest Laboratories, Richland, WA

    Book  Google Scholar 

  • Rao KS (2007) Source estimation methods for atmospheric dispersion. Atmos Environ 41:6964–6973

    Article  CAS  Google Scholar 

  • Raunemaa T, Lehtinen S, Saari H, Kulmala M (1987) 2–10 μm sized hot particles in Chernobyl fallout to Finland. J Aerosol Sci 18(6):693–696

    Article  CAS  Google Scholar 

  • Redwood M (2011) Source term estimation and event reconstruction: a survey. ADMLC/2011/1 report. Atmospheric Dispersion Modelling Liaison Committee, London

    Google Scholar 

  • Reineking A, Becker KH, Porstendörfer J, Wicke A (1987) Air activity concentrations and particle size distributions of the Chernobyl aerosol. Radiat Prot Dosimetry 19:159–163

    CAS  Google Scholar 

  • Robertson L (2004) Extended back-trajectories by means of adjoint equations. Report RMK no. 105. Swedish Meteorological and Hydrological Institute, Norrköping

    Google Scholar 

  • Saari H, Luokkanen S, Kulmala M, Lehtinen S, Raunemaa T (1989) Isolation and characterization of hot particles from Chernobyl fallout in Southwestern Finland. Health Phys 57:975–984

    Article  CAS  Google Scholar 

  • Sahoo SK, Muramatsu Y, Yoshida S, Matsuzaki H, Rühm W (2009) Determination of 129I and 127I concentration in soil samples from the Chernobyl 30-km zone by AMS and ICP-MS. J Radiat Res 50:325–332

    Article  CAS  Google Scholar 

  • Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulas M, Simionovichi A, Snigireva I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov V (2001) High energy X-ray microscopy for characterization of fuel particles. Nucl Instr Meth Phys Res A467–468:1249–1252

    Article  Google Scholar 

  • Salbu B, Krekling T, Oughton DH (1998) Characterization of radioactive particles in the environment. Analyst 123:843–849

    Article  CAS  Google Scholar 

  • Salbu B, Krekling T, Oughton DH, Østby G, Kashparov VA, Brand TL, Day JP (1994) Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. Analyst 119:125–130

    Article  CAS  Google Scholar 

  • Sandalls FJ, Segal MG, Viktorova N (1993) Hot particles from Chernobyl: a review. J Environ Radioact 18:5–22

    Article  CAS  Google Scholar 

  • Saunier O, Mathieu A, Didier D, Tombette M, Quélo D, Winiarek V, Bocquet M (2013) An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos Chem Phys 13:11403–11421

    Article  CAS  Google Scholar 

  • Savonenkov VG, Anderson EB, Smirnova EA, Shabalev SI (2009) Radiogeochemical study of fuel-containing new formations caused by Chernobyl NPP accident. Papers Khlopin Rad Inst 14:87–117. (in Russian)

    CAS  Google Scholar 

  • Sedunov YS, Borzilov VA, Klepikova NV, Chernokozhin EV, Troyanova NI (1989) Physicomathematical modeling of the regional transport of radioactive pollutants in the atmosphere in consequence of the Chernobyl accident. Meterorol Gidrol 9:5–10

    Google Scholar 

  • Shershakov VM, Trakhtengerts ЕА (1996) Development of the RODOS/RECASS system as a distributed, decision making support system in an emergency. Radiat Prot Dosimetry 64:143–147

    Article  Google Scholar 

  • Shestopalov VM (ed) (1996) Atlas of the Chernobyl exclusion zone. Kartographiya, Kyiv. (in Russian)

    Google Scholar 

  • Sich AR (1994) The Chernobyl accident revisited: source term analysis and reconstruction of events during the active phase. Dissertation. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Sinkko K, Aaltonen H, Mustonen R, Taipale TK, Juutilainen J (1987) Airborne radioactivity in Finland after the Chernobyl accident in 1986. STUK – A56. Helsinki, Finnish Centre for Radiation and Nuclear Safety

    Google Scholar 

  • Smith FB, Clark MJ (1988) The transport and deposition of airborne debris from the Chernobyl nuclear power plant accident with special emphasis on the consequences to the United Kingdom. HMSO, London

    Google Scholar 

  • Sofiev M, Valkama I, Fortelius C, Siljamo P (2007) Forward and inverse modelling of radioactive pollutants dispersion after Chernobyl accident. In: Borrego C, Renner E (eds) Developments in environmental science, vol 6, pp 283–292

    Google Scholar 

  • Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    Article  CAS  Google Scholar 

  • Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12:2313–2343

    Article  CAS  Google Scholar 

  • Straume T, Marchetti AA, Anspaugh LR, Khrouch VT, Gavrilin YI, Shinkarev SM, Drozdovitch VV, Ulanovsky AV, Korneev SV, Brekeshev MK, Leonov ES, Voigt G, Panchenko SV, Minenko VF (1996) The feasibility of using 129I to reconstruct 131I deposition from the Chernobyl reactor accident. Health Phys 71(5):733–740

    Article  CAS  Google Scholar 

  • Styro BI, Nedvetskayte TN, Filistovich VI (1992) Iodine isotopes and radioactive safety. Gidrometeoizdat, St-Petersburg

    Google Scholar 

  • Sugiyama G, Nasstrom J, Larsen S, Pobanz B, Simpson M (2014) National Atmospheric Release Advisory Center (NARAC) source estimation capabilities: R&D to operations. CTBTO Workshop, Stockholm, Sweden, 23–25 Sep 2014. Presentation, LLNL-PRES-660636

    Google Scholar 

  • Suh K-S, Han M-H, Jung S-H, Lee C-W (2009) Numerical simulation for a long-range dispersion of a pollutant using Chernobyl data. Math Comput Model 49:337–343

    Article  Google Scholar 

  • Talerko N (1990) Calculating the lift of a radioactive pollutant from the Chernobyl NPP accidental unit. Meteorol Gydrol 10:39–46

    Google Scholar 

  • Talerko N (2005a) Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident. J Environ Radioact 78(3):311–329

    Article  CAS  Google Scholar 

  • Talerko N (2005b) Reconstruction of 131I radioactive contamination of Ukraine caused by the Chernobyl accident using atmospheric transport modeling. J Environ Radioact 84(3):343–362

    Article  CAS  Google Scholar 

  • Talerko MM (2010) Reconstruction of Chernobyl source parameters using gamma dose rate measurements in town Pripyat. Nucl Phys Energ 11(2):169–177. (in Russian)

    Google Scholar 

  • Talerko NN, Garger EK (2005) Experience of atmospheric transport model LEDI testing using field experiments and Chernobyl data. Preprint 05-1. Institute for safety Problems of Nuclear Power Plants, Chernobyl, Kyiv. (in Russian)

    Google Scholar 

  • Terada H, Chino M (2005) Improvement of worldwide version of system for prediction of environmental emergency dose information (WSPEEDI), (II) Evaluation of numerical models by 137Cs deposition due to the Chernobyl nuclear accident. J Nucl Sci Technol 42:651–660

    Article  CAS  Google Scholar 

  • Terada H, Chino M (2008) Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident. J Nucl Sci Technol 45:920–931

    Article  CAS  Google Scholar 

  • Terada H, Katata G, Chino M, Nagai H (2012) Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J Environ Radiat 112:141–154

    Article  CAS  Google Scholar 

  • UNR (Ukraine National Report) (2011) 25 years of the Chernobyl accident. Safety of future. KIM Publishers, Kyiv. (in Ukrainian)

    Google Scholar 

  • UNSCEAR (2000) United Nations Scientific Committee on the effects of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly. Annex J. Exposures and effects of the Chernobyl accident. UN, New York, NY

    Google Scholar 

  • UNSCEAR (2008) United Nations Scientific Committee on the effects of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly. Annex D. Health effects due to radiation from the Chernobyl accident. UN, New York, NY

    Google Scholar 

  • Vakulovskii SM, Orlov MY, Snykov VP (1989) Activity of radionuclides as a source of information about the accident at the Chernobyl NPP. In: Chernobyl-88. Proceedings of the 1st all-union scientific meeting on the results of the liquidation of the Chernobyl accident consequences. Chernobyl 1:4–22. (in Russian)

    Google Scholar 

  • Vakulovskii SM, Shershakov VM, Golubenkov AV, Baranov AY et al (1993) Computer-information support of analysis of radiation environment in the territories polluted as a result of the Chernobyl accident. Radiat Risk 3:39–61

    Google Scholar 

  • Vakulovskii SM, Valetova NK, Nikitin AI (2012) Radioactive contamination of a site in Kiev oblast on April 30, 1986. Atom Energy 111:445–449

    Article  CAS  Google Scholar 

  • Velikhov EP, Ponomarev-Stepnoy NN, Asmolov VG et al (1991) Current understanding of occurrence and development of the accident at the Chernobyl NPP. In: Selected proceedings of the international conference on nuclear accidents and the future of energy. The Lessons of Chernobyl, Paris, pp 12–36

    Google Scholar 

  • Wheeler DA (1988) Atmospheric dispersal and deposition of radioactive material from Chernobyl. Atmos Environ 22(5):853–863

    Article  CAS  Google Scholar 

  • Whitehead NE, Ballestra S, Holm E, Walton A (1988) Air radionuclide patterns observed at Monaco from the Chernobyl accident. J Environ Radioact 7:249–264

    Article  CAS  Google Scholar 

  • Winiarek V, Bocquet M, Duhanyan N, Roustan Y, Saunier O, Mathieu A (2014) Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos Environ 82:268–279

    Article  CAS  Google Scholar 

  • Winkelmann I et al (1987) Radioactivity measurements in the Federal Republic of Germany after the Chernobyl accident, ISH-116. Institut für Strahlenhygiene, Neuherberg

    Google Scholar 

  • Zhurba M, Kashparov V, Ahamdach N, Salbu B, Yoschenko V, Levchuk S (2009) The “Hot particles” data base. In: Oughton DH, Kashparov V (eds) Radioactive particles in the environment. Springer, Dordrecht, pp 187–196

    Chapter  Google Scholar 

  • Zvonova I, Krajewski P, Berkovsky V, Ammann M, Duffa C, Filistovic V, Homma T, Kanyar B, Nedveckaite T, Simon SL, Vlasov O, Webbe-Wood D (2010) Validation of 131I ecological transfer models and thyroid dose assessments using Chernobyl fallout data from the Plavsk district, Russia. J Environ Radioact 101(1):8–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talerko, M., Garger, E., Lev, T., Nosovskyi, A. (2020). Atmospheric Transport of Radionuclides Initially Released as a Result of the Chernobyl Accident. In: Konoplev, A., Kato, K., Kalmykov, S. (eds) Behavior of Radionuclides in the Environment II. Springer, Singapore. https://doi.org/10.1007/978-981-15-3568-0_1

Download citation

Publish with us

Policies and ethics