Skip to main content

Pharmacology of Serotonin and Its Receptors

  • 596 Accesses

Abstract

Serotonin (5-hydroxytryptamine) is found in platelets, neuronal bodies, and with higher concentrations in GIT enterochromaffin cells and lesser amount in the brain. Serotonin is responsible for various secondary actions as it is one of the most important neurotransmitters in the CNS. It comprises seven families, namely 5-HT1 to 5-HT6, which are further divided into different subfamilies. 5-HT is associated with the pathophysiology of many diseases including vomiting, IBS, anxiety, schizophrenia, depression, hypertension, migraine, obsessive-compulsive panic disorders, eating disorders, and carcinoid diarrhea. The present chapter gives emphasis on the action of serotonin on different physiological systems via the serotonin receptors along with their receptor pharmacology, including the agonists, antagonists, and SSRIs.

Keywords

  • Serotonin
  • 5-hydroxytryptamine (5HT)
  • Serotonin receptors
  • SSRIs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-3556-7_6
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-3556-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9

Abbreviations

5-CT:

5-Carboxamidotryptamine

5-HIAA:

5-Hydroxyindoleacetic acid

5-HTT:

5-Hydroxytryptophan transporter

5-HTTP:

5-Hydroxytryptophan

8-OH DPAT:

8-Hydroxy-di-N-propylamino tetralin

AC:

Adenylyl cyclase

Ach:

Acetylcholine

ACTH:

Adrenocorticotrophic hormone

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DAT:

Dopamine transporter

DOB:

2,5-Dimethyl-4-bromoamphetamine

DOI:

2,5-Dimethoxy-4-iodoamphetamine

GABA:

Gamma-aminobutyric acid

GIT:

Gastrointestinal tract

IBS:

Irritable bowel syndrome

IL:

Intracellular

IM:

Intramuscular

IV:

Intravenous

MAO:

Monoamine oxidase

MAT:

Monoamine transporter

MH:

Malignant hyperthermia

NE:

Norepinephrine

NET:

Norepinephrine transporter

NO:

Nitric oxide

PAH:

Pulmonary arterial hypertension

PLA :

Phospholipase A

PLC :

Phospholipase C

PNS:

Peripheral nervous system

PPH:

Primary pulmonary arterial hypertension

SERT:

Serotonin transporter

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

TM:

Transmembrane

UTI:

Urinary tract infection

References

  • Bahra A, Gawel M, Hardebo J-E, Millson D, Breen S, Goadsby P (2000) Oral zolmitriptan is effective in the acute treatment of cluster headache. Neurology 54:1832–1839

    CAS  CrossRef  Google Scholar 

  • Bai B, Wang Y (2011) The use of lorcaserin in the management of obesity: a critical appraisal. Drug Des Devel Ther 5:1

    CAS  Google Scholar 

  • Barnes NM, Neumaier JF (2011) Neuronal 5-HT receptors and SERT. Tocris Biosci Sci Rev Ser 34:1–16

    Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  CrossRef  Google Scholar 

  • Beecher K, Belmer A, Bartlett SE (2019) Anatomy of the serotonin transporter. Serotonin. Elsevier, Amsterdam

    Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    CAS  CrossRef  Google Scholar 

  • Birmes P, Coppin D, Schmitt L, Lauque D (2003) Serotonin syndrome: a brief review. CMAJ 168:1439–1442

    Google Scholar 

  • Bortolozzi A, Díaz-Mataix L, Scorza MC, Celada P, Artigas F (2005) The activation of 5-HT2A receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95:1597–1607

    CAS  CrossRef  Google Scholar 

  • Brashier DB, Sharma A, Dahiya N, Singh S, Khadka A (2014) Lorcaserin: a novel antiobesity drug. J Pharmacol Pharmacother 5:175–178

    CrossRef  Google Scholar 

  • Briejer MR, Bosmans J-P, Van Daele P, Jurzak M, Heylen L, Leysen JE, Prins NH, Schuurkes JA (2001) The in vitro pharmacological profile of prucalopride, a novel enterokinetic compound. Eur J Pharmacol 423:71–83

    Google Scholar 

  • Buckley NA, Dawson AH, Isbister GK (2014) Serotonin syndrome. BMJ 348:g1626

    CrossRef  CAS  Google Scholar 

  • Camilleri M (2001) tegaserod. Aliment Pharmacol Ther 15:277–289

    CAS  CrossRef  Google Scholar 

  • Cazzola M, Matera MG (2000) 5-HT modifiers as a potential treatment of asthma. Trends Pharmacol Sci 21:13–16

    CAS  CrossRef  Google Scholar 

  • Ciranna Á (2006) Serotonin as a modulator of glutamate-and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 4:101–114

    CAS  CrossRef  Google Scholar 

  • Crowell MD (2004) Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol 141:1285–1293

    CAS  CrossRef  Google Scholar 

  • Culy CR, Bhana N, Plosker GL (2001) Ondansetron. Paediatr Drugs 3:441–479

    CAS  CrossRef  Google Scholar 

  • Dahlöf CG (2001) Sumatriptan: pharmacological basis and clinical results. Curr Med Res Opin 17:s35–s45

    CrossRef  Google Scholar 

  • Dahlöf C, Maassen Van Den Brink A (2012) Dihydroergotamine, ergotamine, methysergide and sumatriptan–basic science in relation to migraine treatment. Headache 52:707–714

    Google Scholar 

  • De Ponti F (2004) Pharmacology of serotonin: what a clinician should know. Gut 53:1520–1535

    CrossRef  CAS  Google Scholar 

  • Dodick DW, Martin V (2004) Triptans and CNS side-effects: pharmacokinetic and metabolic mechanisms. Cephalalgia 24:417–424

    CAS  CrossRef  Google Scholar 

  • Ener RA, Meglathery SB, Decker WAV, Gallagher RM (2003) Serotonin syndrome and other serotonergic disorders. Pain Med 4:63–74

    Google Scholar 

  • Femenia-Font A, Balaguer-Fernandez C, Merino V, Rodilla V, Lopez-Castellano A (2005) Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur J Pharm Biopharm 61:50–55

    CAS  CrossRef  Google Scholar 

  • Feng J, Cai X, Zhao J, Yan Z (2001) Serotonin receptors modulate GABAA receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons. J Neurosci 21:6502–6511

    CAS  CrossRef  Google Scholar 

  • Fex M, Stenkula KG (2019) Serotonin and adipocyte function. Serotonin. Elsevier, Amsterdam

    Google Scholar 

  • Frampton JE (2009) Prucalopride. Drugs 69:2463–2476

    CAS  CrossRef  Google Scholar 

  • Frank C (2008) Recognition and treatment of serotonin syndrome. Can Fam Physician 54:988–992

    Google Scholar 

  • Fuseau E, Petricoul O, Moore KH, Barrow A, Ibbotson T (2002) Clinical pharmacokinetics of intranasal sumatriptan. Clin Pharmacokinet 41:801–811

    CAS  CrossRef  Google Scholar 

  • Galligan J (2002) Ligand-gated ion channels in the enteric nervous system. Neurogastroenterol Motil 14:611–623

    CAS  CrossRef  Google Scholar 

  • Gershon MD, Tack J (2007) The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132:397–414

    CAS  CrossRef  Google Scholar 

  • Glennon RA, Dukat M (2002) Serotonin receptors and drugs affecting serotonergic neurotransmission. In: Foye’s Textbook of Medicinal Chemistry. Lippincott Williams & Wilkins, Philadelphia, pp 315–337

    Google Scholar 

  • Goads PJ, Boes CJ (2001) Zolmitriptan: differences from sumatriptan. Curr Med Res Opin 17:s46–s50

    CrossRef  Google Scholar 

  • Göthert M (2013) Serotonin discovery and stepwise disclosure of 5-HT receptor complexity over four decades. Part I. general background and discovery of serotonin as a basis for 5-HT receptor identification. Pharmacol Rep 65:771–786

    Google Scholar 

  • Hamel E, Currents H (2007) Serotonin and migraine: biology and clinical implications. Cephalalgia 27:1293–1300

    CAS  CrossRef  Google Scholar 

  • Hesketh PJ (2008) Chemotherapy-induced nausea and vomiting. N Engl J Med 358:2482–2494

    CAS  CrossRef  Google Scholar 

  • Hiemke C, HÄrtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    CAS  CrossRef  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Google Scholar 

  • Kacperski J, O’brien HL (2012) Triptan use in pediatric migraine: focus on rizatriptan. Future Neurol 7:385–394

    Google Scholar 

  • Katzung BG (2018) Basic & clinical pharmacology. McGraw Hill Education (India) Private Limited, New Delhi

    Google Scholar 

  • Kendig DM, Grider JR (2015) Serotonin and colonic motility. Neurogastroenterol Motil 27:899–905

    CAS  CrossRef  Google Scholar 

  • King MV, Marsden CA, Fone KC (2008) A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci 29:482–492

    CAS  CrossRef  Google Scholar 

  • Kitson SL (2007) 5-hydroxytryptamine (5-HT) receptor ligands. Curr Pharm Des 13:2621–2637

    CAS  CrossRef  Google Scholar 

  • Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT 2A, 5-HT 2B and 5-HT 2C receptors. Naunyn Schmiedeberg’s Arch Pharmacol 370:114–123

    CAS  CrossRef  Google Scholar 

  • Kroeze WK, Kristiansen K, Roth BL (2002) Molecular biology of serotonin receptors-structure and function at the molecular level. Curr Top Med Chem 2:507–528

    CAS  CrossRef  Google Scholar 

  • Lambert GA (2005) Preclinical neuropharmacology of naratriptan. CNS Drug Rev 11:289–316

    CAS  CrossRef  Google Scholar 

  • Lanfumey L, Hamon M (2004) 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord 3:1–10

    CAS  CrossRef  Google Scholar 

  • Launay J-M, Herve P, Peoc’H K, Tournois C, Callebert J, Nebigil C, Etienne N, Drouet L, Humbert M, Simonneau G (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    CAS  CrossRef  Google Scholar 

  • Lewis DW, Winner P, Hershey AD, Wasiewski WW (2007) Efficacy of zolmitriptan nasal spray in adolescent migraine. Pediatrics 120:390–396

    CrossRef  Google Scholar 

  • Leysen J (2004) 5-HT2 receptors. Current Drug Targets CNS Neurol Disord 3:11–26

    CAS  CrossRef  Google Scholar 

  • Lummis SC (2012) 5-HT3 receptors. J Biol Chem 287:40239–40245

    CAS  CrossRef  Google Scholar 

  • Maclean MR, Herve P, Eddahibi S, Adnot S (2000) 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol 131:161–168

    CAS  CrossRef  Google Scholar 

  • Meneses A (2015) Serotonin, neural markers, and memory. Front Pharmacol 6:143

    CrossRef  CAS  Google Scholar 

  • Mohammad-Zadeh L, Moses L, Gwaltney-Brant S (2008) Serotonin: a review. J Vet Pharmacol Ther 31:187–199

    CAS  CrossRef  Google Scholar 

  • Müller-Lissner S, Fumagalli I, Bardhan K, Pace F, Pecher E, Nault B, Rüegg P (2001) Tegaserod, a 5-HT4 receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment Pharmacol Ther 15:1655–1666

    CrossRef  Google Scholar 

  • Naughton M, Mulrooney JB, Leonard BE (2000) A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol Clin Exp 15:397–415

    CAS  CrossRef  Google Scholar 

  • Navari RM (2013) Management of chemotherapy-induced nausea and vomiting. Drugs 73:249–262

    Google Scholar 

  • Nelson D (2004) 5-HT5 receptors. Curr Drug Targets CNS Neurol Disord 3:53–58

    CAS  CrossRef  Google Scholar 

  • Ni W, Watts SW (2006) 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT). Clin Exp Pharmacol Physiol 33:575–583

    CAS  CrossRef  Google Scholar 

  • Nordquist N, Oreland L (2010) Serotonin, genetic variability, behaviour, and psychiatric disorders-a review. Ups J Med Sci 115:2–10

    CrossRef  Google Scholar 

  • Pauwels PJ (2003) 5-HT receptors and their ligands. Neuropharmacology 1083:38

    Google Scholar 

  • Peterlin BL, Rapoport AM (2007) Clinical pharmacology of the serotonin receptor agonist, zolmitriptan. Expert Opin Drug Metab Toxicol 3:899–911

    CAS  CrossRef  Google Scholar 

  • Pytliak M, Vargová V, Mechírová V, Felsöci M (2011) Serotonin receptors-from molecular biology to clinical applications. Physiol Res 60:15

    CAS  CrossRef  Google Scholar 

  • Rang HP, Ritter J, Flower R, Henderson G (2016) Rang & Dale’s pharmacology. Elsevier, Amsterdam

    Google Scholar 

  • Rojas C, Stathis M, Thomas AG, Massuda EB, Alt J, Zhang J, Rubenstein E, Sebastiani S, Cantoreggi S, Snyder SH (2008) Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth Analg 107:469–478

    CAS  CrossRef  Google Scholar 

  • Rudnick G (2006) Serotonin transporters–structure and function. J Membr Biol 213:101–110

    CAS  CrossRef  Google Scholar 

  • Sarrouilhe D, Mesnil M (2019) Serotonin and human cancer: a critical view. Biochimie 161:46–50

    CAS  CrossRef  Google Scholar 

  • Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol 12:115–121

    CAS  CrossRef  Google Scholar 

  • Schmuck K, Ullmer C, Kalkman HO, Probst A, Lübbert H (1996) Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache? Eur J Neurosci 8:959–967

    CAS  CrossRef  Google Scholar 

  • Shad KF (2017) Introductory chapter: serotonin-the Most ancient neurotransmitter, hormone and trophic factor. In: Serotonin-a chemical messenger between all types of living cells. IntechOpen, London

    CrossRef  Google Scholar 

  • Shajib M, Khan W (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol 213:561–574

    CAS  CrossRef  Google Scholar 

  • Sibley DR, Hazelwood LA, Amara SG (2018) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw Hill Education, New York, NY

    Google Scholar 

  • Sikander A, Rana SV, Prasad KK (2009) Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta 403:47–55

    CAS  CrossRef  Google Scholar 

  • Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA, Estrada SA, Chen RR, Park DM, Prieto EB, Gallardo CS, Sengupta D, Dosa PI, Covel JA, Ren A, Webb RR, Beeley NRA, Martin M, Morgan M, Espitia S, Saldana HR, Bjenning C, Whelan KT, Grottick AJ, Menzaghi F, Thomsen WJ (2008) Discovery and structure activity relationship of (1R)-8-Chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin 5-HT2C receptor agonist for the treatment of obesity. J Med Chem 51(2):305–313

    CAS  CrossRef  Google Scholar 

  • Smith SR, Prosser WA, Donahue DJ, Morgan ME, Anderson CM, Shanahan WR, Group AS (2009) Lorcaserin (APD356), a selective 5-HT2C agonist, reduces body weight in obese men and women. Obesity 17:494–503

    CAS  CrossRef  Google Scholar 

  • Spiller R (2002) Serotonergic modulating drugs for functional gastrointestinal diseases. Br J Clin Pharmacol 54:11–20

    CAS  CrossRef  Google Scholar 

  • Srivastava A, Raghavendra KP, Parate LH (2016) A comparative study of palonosetron versus palonosetron and dexamethasone for the prevention of postoperative nausea and vomiting in subjects undergoing laparoscopic surgeries: a randomized double-blind control study. Karnataka Anaesth J 2:19–24

    CrossRef  Google Scholar 

  • Tack J, Camilleri M, Chang L, Chey W, Galligan J, Lacy B, Müller-Lissner S, Quigley E, Schuurkes J, De Maeyer J (2012) Systematic review: cardiovascular safety profile of 5-HT 4 agonists developed for gastrointestinal disorders. Aliment Pharmacol Ther 35:745–767

    Google Scholar 

  • Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59:1084–1088

    CrossRef  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111:707–714

    Google Scholar 

  • Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Curr Drug Targets CNS Neurol Disord 3:81–90

    CAS  CrossRef  Google Scholar 

  • Thompson AJ, Lummis SC (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets 11:527–540

    CAS  CrossRef  Google Scholar 

  • Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-Saldana H, Espitia S, Yuskin D, Whelan K, Martin M, Morgan M, Chen W (2008) Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 325:577–587

    CAS  CrossRef  Google Scholar 

  • Tripathi K (2013) Essential of medical pharmacology, Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi

    Google Scholar 

  • Upadhyay S (2003) Serotonin receptors, agonists and antagonists. Indian J Nucl Med 18:1–11

    Google Scholar 

  • Villaln C, Centurin D, Valdivia L, De Vries P, Saxena PR (2003) Migraine: pathophysiology, pharmacology, treatment and future trends. Curr Vasc Pharmacol 1:71–84

    Google Scholar 

  • Wang H-T, Han F, Shi Y-X (2009) Activity of the 5-HT1A receptor is involved in the alteration of glucocorticoid receptor in hippocampus and corticotropin-releasing factor in hypothalamus in SPS rats. Int J Mol Med 24:227–231

    CAS  Google Scholar 

  • Wappler F, Fiege M, Am Esch JS (2001) Pathophysiological role of the serotonin system in malignant hyperthermia. Br J Anaesth 87:794–798

    Google Scholar 

  • Wellington K, Jarvis B (2002) Spotlight on rizatriptan in migraine. CNS Drugs 16:715–720

    Google Scholar 

  • Woolley ML, Marsden CA, Fone KC (2004) 5-ht6 receptors. Curr Drug Targets CNS Neurol Disord 3:59–79

    Google Scholar 

  • Wu H, Denna TH, Storkersen JN, Gerriets VA (2019) Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res 140:100–114

    CAS  CrossRef  Google Scholar 

  • Xue W, Fu T, Zheng G, Tu G, Zhang Y, Yang F, Tao L, Yao L, Zhu F (2019) Recent advances and challenges of the drugs acting on monoamine transporters. Curr Med Chem. https://doi.org/10.2174/0929867325666181009123218

  • Ye JH, Ponnudurai R, Schaefer R (2001) Ondansetron: a selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev 7:199–213

    Google Scholar 

  • Zarrindast M-R, Nasehi M, Hoseinpourfard M (2014) A mini review of serotonin and its receptors. Int J Med Rev 1:39–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Deka, S., Bania, R., Borah, P., Das, S., Deb, P.K. (2020). Pharmacology of Serotonin and Its Receptors. In: Kumar, P., Deb, P.K. (eds) Frontiers in Pharmacology of Neurotransmitters. Springer, Singapore. https://doi.org/10.1007/978-981-15-3556-7_6

Download citation